設(shè)x,y滿足約束條件,
(1)畫出不等式表示的平面區(qū)域;
(2)若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,求a、b滿足的關(guān)系式.
(1)詳見解析;(2)
解析試題分析:(1)先在直角坐標(biāo)系中畫出各直線方程,再用特殊點(diǎn)代入法判斷各不等式表示的平面區(qū)域,其公共部分即為不等式組表示的平面區(qū)域。(2)畫出目標(biāo)函數(shù)線,平移使其經(jīng)過(guò)可行域當(dāng)目標(biāo)函數(shù)線的縱截距最大時(shí),取得最大值,求出滿足條件的此點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)。
試題解析:解:(1)不等式表示的平面區(qū)域如圖所示陰影部分.
6分
(2)當(dāng)直線ax+by=z(a>0,b>0)過(guò)直線x-y+2=0與直線3x-y-6=0的交點(diǎn)(4,6)時(shí),
目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大值4,即4a+6b=4,
即. 12分
考點(diǎn):線性規(guī)劃
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在三邊圍成的區(qū)域(含邊界)上
(1)若,求;
(2)設(shè),用表示,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司計(jì)劃2013年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告,廣告總費(fèi)用不超過(guò)9萬(wàn)元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告能給公司帶來(lái)的收益分別為0.3萬(wàn)元和0.2萬(wàn)元.問(wèn)該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中,角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),且.
(1)若點(diǎn)的坐標(biāo)為(-),求的值;
(2)若點(diǎn)為平面區(qū)域上的一個(gè)動(dòng)點(diǎn),試確定角的取值范圍,并求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
三個(gè)數(shù)a=0.32,之間的大小關(guān)系是( 。
A.b<c<a | B.c<b<a | C.b<a<c | D.a(chǎn)<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若關(guān)于x的不等式|x-a|<1的解集為(2,4),則實(shí)數(shù)a的值
為 ( )
A.3 | B.2 | C.-3 | D.-2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com