【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,短軸長(zhǎng)為2,為原點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,且的面積是的面積的3倍.
(1)求橢圓的方程;
(2)直線與橢圓相交于兩點(diǎn),若在橢圓上存在點(diǎn),使為平行四邊形,求取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)依題意有,根據(jù)面積比求得點(diǎn)的坐標(biāo),代入橢圓方程求得,,所以橢圓方程為;(2)設(shè),利用平行四邊形對(duì)角線可求得點(diǎn)的坐標(biāo),代入橢圓方程化簡(jiǎn)得,聯(lián)立,消去寫(xiě)出韋達(dá)定理,代入上式化簡(jiǎn)得,解得.
試題解析:
(1) 短軸長(zhǎng)為2,可得,即,設(shè)
的面積是的面積的3倍,即為
可得,由直線經(jīng)過(guò)可得,即,代入橢圓方程可得
即為,即有,則橢圓的方程為;
(2)設(shè),由為平行四邊形可得
在橢圓上可得,即為
化為
由,可得,由即為
代入可得,化為
又,解得或,則取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).
(Ⅰ)求證: ∥平面
(Ⅱ)若,,
求證:平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)拋擲甲、乙兩顆骰子.
(1)求事件A“甲的點(diǎn)數(shù)大于乙的點(diǎn)數(shù)”的概率;
(2)若以拋擲甲、乙兩顆骰子點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo)(m,n),求事件B“P落在圓內(nèi)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線上任意一點(diǎn)M滿足, 其中F (-F (拋物線的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn), 頂點(diǎn)為原點(diǎn)O.
(I)求, 的標(biāo)準(zhǔn)方程;
(II)請(qǐng)問(wèn)是否存在直線l滿足條件:① 過(guò)的焦點(diǎn);② 與交于不同兩點(diǎn), 且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為加強(qiáng)學(xué)生的交通安全教育,對(duì)學(xué)校旁邊,兩個(gè)路口進(jìn)行了8天的檢測(cè)調(diào)查,得到每天各路口不按交通規(guī)則過(guò)馬路的學(xué)生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.
(1)求出路口8個(gè)數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;
(2)在路口的數(shù)據(jù)中任取大于35的2個(gè)數(shù)據(jù),求所抽取的兩個(gè)數(shù)據(jù)中至少有一個(gè)不小于40的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校收集該校學(xué)生從家到學(xué)校的時(shí)間后,制作成如下的頻率分布直方圖:
(1)求的值及該校學(xué)生從家到校的平均時(shí)間;
(2)若該校因?qū)W生寢室不足,只能容納全校的學(xué)生住校,出于安全角度考慮,從家到校時(shí)間較長(zhǎng)的學(xué)生才住校,請(qǐng)問(wèn)從家到校時(shí)間多少分鐘以上開(kāi)始住校.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形中,已知,,點(diǎn)在軸上,,且對(duì)角線.
(1)求點(diǎn)的軌跡的方程;
(2)若點(diǎn)是直線上任意一點(diǎn),過(guò)點(diǎn)作點(diǎn)的軌跡的兩切線,為切點(diǎn),直線是否恒過(guò)一定點(diǎn)?若是,請(qǐng)求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平潭國(guó)際“花式風(fēng)箏沖浪”集訓(xùn)隊(duì),在平潭龍鳳頭海濱浴場(chǎng)進(jìn)行集訓(xùn),海濱區(qū)域的某個(gè)觀測(cè)點(diǎn)觀測(cè)到該處水深(米)是隨著一天的時(shí)間呈周期性變化,某天各時(shí)刻的水深數(shù)據(jù)的近似值如下表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 2.4 | 1.5 | 0.6 | 1.4 | 2.4 | 1.6 | 0.6 | 1.5 |
(Ⅰ)根據(jù)表中近似數(shù)據(jù)畫(huà)出散點(diǎn)圖(坐標(biāo)系在答題卷中).觀察散點(diǎn)圖,從
①, ②,③
中選擇一個(gè)合適的函數(shù)模型,并求出該擬合模型的函數(shù)解析式;(Ⅱ)為保證隊(duì)員安全,規(guī)定在一天中的5~18時(shí)且水深不低于1.05米的時(shí)候進(jìn)行訓(xùn)練,根據(jù)(Ⅰ) 中的選擇的函數(shù)解析式,試問(wèn):這一天可以安排什么時(shí)間段組織訓(xùn)練,才能確保集訓(xùn)隊(duì)員的安全。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為,山區(qū)邊界曲線為,計(jì)劃修建的公路為,如圖所示,為的兩個(gè)端點(diǎn),測(cè)得點(diǎn)到的距離分別為5千米和40千米,點(diǎn)到的距離分別為20千米和2.5千米,以所在的直線分別為軸,建立平面直角坐標(biāo)系,假設(shè)曲線符合函數(shù)(其中為常數(shù))模型.
(1)求的值;
(2)設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.
①請(qǐng)寫(xiě)出公路長(zhǎng)度的函數(shù)解析式,并寫(xiě)出其定義域;
②當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com