已知Sn=(-1)n+1,求數(shù)列{an}.
考點(diǎn):數(shù)列的函數(shù)特性
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:根據(jù)n=1時(shí),a1=1,n≥2時(shí),an=Sn-Sn-1=2•(-1)n.求解即可.
解答: 解:∵Sn=(-1)n+1,
∴n=1時(shí),a1=1,
n≥2時(shí),an=Sn-Sn-1=2•(-1)n
∴an=
1,n=1
2(-1)n,n≥2
點(diǎn)評(píng):本題考查了數(shù)列的通項(xiàng)公式,與前n 項(xiàng)和的性質(zhì),屬于容易題,但是容易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+mx+9在區(qū)間(-3,3)上具有單調(diào)性,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-6]
B、[6,+∞)
C、(-∞,-6]∪[6,+∞)
D、[-6,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(2,m),
OB
=(1,
3
),且向量
OA
在向量
OB
方向上的投影為1,則|
AB
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入x,t的值均為2,最后輸出S的值為n,在區(qū)間[0,10]上隨機(jī)選取一個(gè)數(shù)D,則D≤n的概率為( 。
A、
4
10
B、
5
10
C、
6
10
D、
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=4,∠ABC=30°,D是邊BC上的一點(diǎn),且
AD
AB
=
AD
AC
,則
AD
AB
的值為( 。
A、0B、4C、8D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

limt
x→+∞
(1+
1
x
)
x2
e-x=( 。
A、e-
1
2
B、1
C、0
D、e
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線C上任意一點(diǎn)與直線l上任意一點(diǎn)的距離都大于1,則稱曲線C“遠(yuǎn)離”直線l,在下列曲線中,“遠(yuǎn)離”直線l:y=2x的曲線有
 
.(寫(xiě)出所有符合條件的曲線C的編號(hào))
①曲線C:2x-y+
5
=0②曲線C:y=-x2+2x-
9
4

③曲線C:x2+(y-5)2=1④曲線C:y=ex+1
⑤曲線C:y=lnx-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x3+ax2+bx,(x<1)
-
3
2
clnx,(x≥1)
, 
的圖象在點(diǎn)(-1,f(-1))處的切線方程為5x+y+3=0.
(I)求實(shí)數(shù)a,b的值及函數(shù)f(x)在區(qū)間[-1,2]上的最大值;
(Ⅱ)曲線y=f(x)上存在兩點(diǎn)M、N,使得△MON是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊MN的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:
a
•[
b
(
a
c
)-(
a
b
)
c
]
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案