過拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|=
25
12
,|AF|<|BF|
,則|AF|=______.
由題意可得:F(
1
2
,0),設(shè)A(x1,y1),B(x2,y2).
因?yàn)檫^拋物線y2=2x的焦點(diǎn)F作直線l交拋物線于A、B兩點(diǎn),
所以|AF|=
1
2
+x1,|BF|=
1
2
+x2
因?yàn)?span mathtag="math" >|AB|=
25
12
,所以x1+x2=
13
12

設(shè)直線l的方程為y=k(x-
1
2
),
聯(lián)立直線與拋物線的方程可得:k2x2-(k2+2)x+
k2
4
=0,
所以x1+x2=
k2+2
k2

k2+2
k2
=
13
12

∴k2=24
∴24x2-26x+6=0,
x1=
1
3
,x2=
3
4

∴|AF|=
1
2
+x1=
5
6

故答案為:
5
6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點(diǎn)F作傾斜角為45°的直線交拋物線于A,B,則線段AB的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點(diǎn)F作直線l交拋物線于A、B兩點(diǎn),若
1
|AF|
-
1
|BF|
=1,則直線l
的傾斜角θ(0<θ≤
π
2
)
等于( 。
A、
π
2
B、
π
3
C、
π
4
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點(diǎn)作一條直線與拋物線交于兩點(diǎn),它們的橫坐標(biāo)之和等于2,則這樣的直線( 。
A、有且只有一條B、有且只有兩條C、有且只有三條D、有且只有四條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的對(duì)稱軸上的定點(diǎn)M(m,0),(m>0),作直線AB交拋物線于A,B兩點(diǎn).
(1)試證明A,B兩點(diǎn)的縱坐標(biāo)之積為定值;
(2)若△OAB的面積的最小值為4,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點(diǎn)作直線交拋物線于P(x1,y1),Q(x2,y2)兩點(diǎn),若x1+x2=3,則|PQ|=
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案