用邊長為48cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊接成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為( )
A.12cm
B.16cm
C.4cm
D.8cm
【答案】分析:根據(jù)題意先設(shè)小正方形邊長為x,計算出鐵盒體積的函數(shù)解析式,再利用導數(shù)研究此函數(shù)的單調(diào)性,進而求得此函數(shù)的最大值即可.
解答:解:設(shè)小正方形邊長為x,鐵盒體積為y.
y=(48-2x)2•x=4x3-192x2+2304x.
y′=12x2-384x+2304=12(x-8)(x-24).
∵48-2x>0,
∴0<x<24.
∴x=8時,ymax=8192.
故選D.
點評:本小題主要考查函數(shù)模型的選擇與應(yīng)用,屬于基礎(chǔ)題.解決實際問題通常有四個步驟:(1)閱讀理解,認真審題;(2)引進數(shù)學符號,建立數(shù)學模型;(3)利用數(shù)學的方法,得到數(shù)學結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學模型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

用邊長為48cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊接成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

用邊長為48cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為

[  ]

A5

B8

C10

D12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

用邊長為48cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊接成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為


  1. A.
    12cm
  2. B.
    16cm
  3. C.
    4cm
  4. D.
    8cm

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省惠州一中高二(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

用邊長為48cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊接成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為( )
A.12cm
B.16cm
C.4cm
D.8cm

查看答案和解析>>

同步練習冊答案