如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
(1)見試題解析;(2).
解析試題分析:(1)要證兩直線垂直,一般通過證明其中一條直線垂直于過另一條直線的平面,這里觀察已知,有PD⊥平面ABCD,則有PD⊥BC,又BC⊥CD,顯然就有BC⊥平面PCD,問題得證;(2)要求點A到平面PBC的距離,由于三棱錐P-ABC的體積容易求出(底面是三角形ABC,高是PD),故可用體積法求點A到平面PBC的距離,見解法二.當然題中由于且,故A到平面PBC的距離等于D到平面PBC的距離的2倍,從而可能先求點D到平面PBC的距離,此時直接作出垂線段即可,見解法一.
試題解析:(1)證明:因為PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC.
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD.
因為PC平面PCD,故PC⊥BC.
(2)(方法一)分別取AB、PC的中點E、F,連DE、DF,則:易證DE∥CB,DE∥平面PBC,點D、E到平面PBC的距離相等.又點A到平面PBC的距離等于E到平面PBC的距離的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因為PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故點A到平面PBC的距離等于.
(方法二)體積法:連結AC.設點A到平面PBC的距離為h.
因為AB∥DC,∠BCD=900,所以∠ABC=900.
從而AB=2,BC=1,得的面積.
由PD⊥平面ABCD及PD=1,得三棱錐P-ABC的體積.
因為PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC.
又PD=DC=1,所以.
由PC⊥BC,BC=1,得的面積.
由,,得,
故點A到平面PBC的距離等于.
考點:(1)線面垂直與線線垂直;(2)點到平面的距離.
科目:高中數(shù)學 來源: 題型:解答題
在長方體中,為線段中點.
(1)求直線與直線所成的角的余弦值;
(2)若,求二面角的大;
(3)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是、邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:MB平面PAD;
(2)求點A到平面PMB的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com