分析 由約束條件作出可行域,分類化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y-6≤0\\ 2x+y-6≤0\end{array}\right.$作出可行域如圖,
當(dāng)x≥1,y≥0時(shí),目標(biāo)函數(shù)化為z=x+y+1,即y=-x+z-1,
∴當(dāng)直線y=-x+z-1過(guò)(1,0)時(shí),直線在y軸上的截距最小,z有最小值為2,當(dāng)直線y=-x+z-1過(guò)(2,2)時(shí),直線在y軸上的截距最大,z有最小值為5;
當(dāng)0≤x<1,y≥0時(shí),目標(biāo)函數(shù)化為z=-x+y+3,即y=x+z-3,
當(dāng)直線y=x+z-3過(guò)(1,0)時(shí),直線在y軸上的截距最小,∴z>2,當(dāng)直線y=x+z-3過(guò)(0,3)時(shí),直線在y軸上的截距最大,z有最小值為6.
∴z=|x-1|+|y+2|的取值范圍為[2,6].
故答案為:[2,6].
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若命題p、q中至少有一個(gè)為真命題,則“p∧q”是真命題 | |
B. | 不等式ac2>bc2成立的充要條件是a>b | |
C. | “正四棱錐的底面是正方形”的逆命題是真命題 | |
D. | 若k>0,則方程x2+2x-k=0有實(shí)根 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\frac{{{x^2}+x}}{x+1}$與g(x)=x-1 | B. | f(x)=2|x|與$g(x)=\sqrt{4{x^2}}$ | ||
C. | $f(x)=\sqrt{x^2}$與$g(x)={(\sqrt{x})^2}$ | D. | $y=\sqrt{x+1}\sqrt{x-1}$與$y=\sqrt{{x^2}-1}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com