(2009北京卷文)(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與
平面PDB所成的角的大小.
【解法1】本題主要考查直線和平面垂直、平面與平面垂直、直線與平面所成的角等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力.
(Ⅰ)∵四邊形ABCD是正方形,∴AC⊥BD,
∵,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面.
(Ⅱ)設(shè)AC∩BD=O,連接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO為AE與平面PDB所的角,
∴O,E分別為DB、PB的中點(diǎn),
∴OE//PD,,又∵,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴,即AE與平面PDB所成的角的大小為.
【解法2】如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,
設(shè)
則,
(Ⅰ)∵,
∴,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面.
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),,
設(shè)AC∩BD=O,連接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO為AE與平面PDB所的角,
∵,
∴,
∴,即AE與平面PDB所成的角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京卷文)設(shè)D是正及其內(nèi)部的點(diǎn)構(gòu)成的集合,點(diǎn)是的中心,若集合,則集合S表示的平面區(qū)域是 ( )
A. 三角形區(qū)域 B.四邊形區(qū)域
C. 五邊形區(qū)域 D.六邊形區(qū)域
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京卷文)若正四棱柱的底面邊長(zhǎng)為1,與底面ABCD成60°角,則到底面ABCD的距離為 ( )
A. B. 1 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京卷文)若正四棱柱的底面邊長(zhǎng)為1,與底面ABCD成60°角,則到底面ABCD的距離為 ( )
A. B. 1 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com