【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )
A. [,0) B. [,0] C. [,1) D. [,1]
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的中心為O , 四邊形OBEF為矩形,平面OBEF⊥平面ABCD , 點G為AB的中點,AB=BE=2.
(1)求證:EG∥平面ADF;
(2)求二面角O-EF-C的正弦值;
(3)設H為線段AF上的點,且AH= HF , 求直線BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A、B、C三個班共有100名學生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時);
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(1)試估計C班的學生人數(shù);
(2)從A班和C班抽出的學生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙,假設所有學生的鍛煉時間相對獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;
(3)再從A、B、C三個班中各隨機抽取一名學生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時),這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構成的新樣本的平均數(shù)記 ,表格中數(shù)據(jù)的平均數(shù)記為 ,試判斷 和 的大小,(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x +bx,曲線y=f(x)在點 (2,f(2))處的切線方程為y=(e-1)x+4,
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P﹣A1B1C1D1 , 下部的形狀是正四棱柱ABCD﹣A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6m,PO1=2m,則倉庫的容積是多少?
(2)若正四棱柱的側(cè)棱長為6m,則當PO1為多少時,倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,M,N,K分別是正方體ABCD—A1B1C1D1的棱AB,CD,C1D1的中點.
求證:(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是( 。
A.56
B.60
C.120
D.140
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于.
(1)求直線l的方程.
(2)求圓心在直線l上且經(jīng)過點M(2,1),N(4,-1)的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com