已知a為實(shí)數(shù),函數(shù)

(1)若,求函數(shù)在定義域上的極大值和極小值;

(2)若函數(shù)的圖象上有與x軸平行的切線,求a的取值范圍。

 

【答案】

(1)取得極大值為;

取得極小值為

(2)實(shí)數(shù)的取值范圍是

【解析】解:(Ⅰ)∵,∴,即.                   

.                           … 2分

,得;       

,得.                                  … 4分

取得極大值為;

取得極小值為.                         … 8分

(Ⅱ) ∵,∴

∵函數(shù)的圖象上有與軸平行的切線,∴有實(shí)數(shù)解.        … 10分

,∴,即

因此,所求實(shí)數(shù)的取值范圍是.             … 12

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、已知a為實(shí)數(shù),函數(shù)f(x)=ex(x2-ax+a).
(Ⅰ)求f′(0)的值;
(Ⅱ)若a>2,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),函數(shù)f(x)=(1+ax)ex,函數(shù)g(x)=
1
1-ax
,令函數(shù)F(x)=f(x)•g(x).
(1)若a=1,求函數(shù)f(x)的極小值;
(2)當(dāng)a=-
1
2
時(shí),解不等式F(x)<1;
(3)當(dāng)a<0時(shí),求函數(shù)F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),函數(shù)f(x)=
1
1-ax
,g(x)=(1+ax)ex,記F(x)=f(x)•g(x).
(1)若函數(shù)f(x)在點(diǎn)(0,1)處的切線方程為x+y-1=0,求a的值;
(2)若a=1,求函數(shù)g(x)的最小值;
(3)當(dāng)a=-
1
2
時(shí),解不等式F(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•鎮(zhèn)江一模)已知a為實(shí)數(shù),函數(shù)f(x)=x2-2alnx.
(1)求f(x)在[1,+∞)上的最小值g(a);
(2)若a>0,試證明:“方程f(x)=2ax有唯一解”的充要條件是“a=
12
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),函數(shù)f(x)=(x2+1)(x+a)
(I)若f′(-1)=0,求函數(shù)y=f(x)在[-
3
2
,1]上的最大值和最小值;
(II)若對于m取任何值,直線y=
1
2
x+m都不是函數(shù)f(x)圖象的切線,求a值的范圍.

查看答案和解析>>

同步練習(xí)冊答案