當(dāng)函數(shù)(>0)取最小值時(shí)相應(yīng)的的值等于     

 

【答案】

【解析】

試題分析:根據(jù)題意可知,由于函數(shù)時(shí)取得等號,故可知函數(shù)的 最小值為1,此時(shí)x的取值為,故答案為

考點(diǎn):均值不等式求解最值

點(diǎn)評:解決的關(guān)鍵是利用一正二定三相等的思想來確定函數(shù)的最值以及最值成立的條件,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,滿足f(0)=f(1)=0,且f(x)的最小值是-
1
4

(1)求f(x)的解析式;
(2)設(shè)直線l:y=t2-t(其中0<t<
1
2
,t為常數(shù)),若直線l與f(x)的圖象以及y軸所圍成封閉圖形的面積是S1(t),直線l與f(x)的圖象所圍成封閉圖形的面積是S2(t),設(shè)g(t)=S1(t)+
1
2
S2(t)
,當(dāng)g(t)取最小值時(shí),求t的值.
(3)已知m≥0,n≥0,求證:
1
2
(m+n)2+
1
4
(m+n)≥m
n
+n
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,滿足f(0)=f(1)=0,且f(x)的最小值是-
1
4

(1)求f(x)的解析式;
(2)設(shè)直線l:y=t2-t(其中0<t<
1
2
,t為常數(shù)),若直線l與f(x)的圖象以及y軸所圍成封閉圖形的面積是S1(t),直線l與f(x)的圖象所圍成封閉圖形的面積是S2(t),設(shè)g(t)=S1(t)+
1
2
S2(t),當(dāng)g(t)取最小值時(shí),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin
x
4
cos
x
4
-2
3
sin2
x
4
+
3

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在閉區(qū)間[0,π]上的最小值并求當(dāng)f(x)取最小值時(shí)x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x2+bx+c)ex在點(diǎn)M(0,f(0))處的切線方程是x+2y+1=0.
(1)求f(x)的表達(dá)式;
(2)求f(x)的單調(diào)區(qū)間;
(3)求當(dāng)f(x)取最小值時(shí)x的取值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-x,設(shè)直線l:y=t2-t(其中0<t<
1
2
,t為常數(shù)),若直線l與f(x)的圖象以及y軸所圍成的封閉圖形的面積是s1(t),直線l與f(x)的圖象所圍成封閉圖形的面積是s2(t),設(shè)g(t)=s1(t)+
1
2
s2(t),當(dāng)g(t)取最小值時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊答案