A. | M-N=4 | B. | M-N=0 | C. | M+N=4 | D. | M+N=0 |
分析 化簡(jiǎn)函數(shù)f(x)=2+$\frac{2sinx-x}{{2x}^{2}+cosx}$,令g(x)=$\frac{2sinx-x}{{2x}^{2}+cosx}$,則f(x)=g(x)+2,g(x)為定義域上的奇函數(shù),最大值與最小值的和為0;由此求出M+N的值.
解答 解:函數(shù)f(x)=$\frac{{2\sqrt{2}sin(x+\frac{π}{4})+4{x^2}-x}}{{2{x^2}+cosx}}$
=$\frac{2(sinx+cosx)+{4x}^{2}-x}{{2x}^{2}+cosx}$
=$\frac{2cosx+{4x}^{2}}{{2x}^{2}+cosx}$+$\frac{2sinx-x}{{2x}^{2}+cosx}$
=2+$\frac{2sinx-x}{{2x}^{2}+cosx}$;
令g(x)=$\frac{2sinx-x}{{2x}^{2}+cosx}$,
則f(x)=g(x)+2,g(-x)=$\frac{-2sinx+x}{{2x}^{2}+cosx}$=-g(x),
∴函數(shù)g(x)為定義域上的奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,
最大值與最小值也關(guān)于原點(diǎn)對(duì)稱,
即函數(shù)g(x)的最值的和為0.
∵f(x)=g(x)+2,
∴M+N=g(x)min+2+g(x)max+2=4.
故選:C.
點(diǎn)評(píng) 本題考查了利用函數(shù)的奇偶性求最值的應(yīng)用問(wèn)題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{2}$ | B. | 3 | C. | $\frac{15\sqrt{3}}{2}$ | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k•360°+24°(k∈z) | B. | k•360°-24°(k∈z) | C. | k•360°+336°(k∈z) | D. | k•360°-156°(k∈z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ①② | C. | ①③④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com