4.如果滿足不等式$|{x-\frac{5}{4}}|<b({b>0})$的一切實數(shù)x也滿足不等式|x-1|<$\frac{1}{2}$,則b的取值范圍是( 。
A.$({0,\frac{3}{4}})$B.$({0,\frac{1}{4}}]$C.$[{\frac{1}{4},\frac{3}{4}}]$D.$[{\frac{3}{4},+∞})$

分析 求得不等式$|{x-\frac{5}{4}}|<b({b>0})$的解集A,不等式|x-1|<$\frac{1}{2}$的解集B,由題意可得A⊆B,再結(jié)合b>0,求得實數(shù)b的取值范圍.

解答 解:由|x-$\frac{5}{4}$|<b,解得:$\frac{5}{4}$-b<x<$\frac{5}{4}$+b,
設(shè)A=($\frac{5}{4}$-b,$\frac{5}{4}$+b),
由|x-1|<$\frac{1}{2}$,解得:$\frac{1}{2}$<x<$\frac{3}{2}$,
設(shè)B=($\frac{1}{2}$,$\frac{3}{2}$),
結(jié)合題意A⊆B,
故$\left\{\begin{array}{l}{\frac{5}{4}-b≥\frac{1}{2}}\\{\frac{5}{4}+b≤\frac{3}{2}}\\{b>0}\end{array}\right.$,解得:0<b≤$\frac{1}{4}$,
故選:B.

點評 本題主要考查絕對值不等式的解法,集合間的包換關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出S的值為( 。
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{6}{7}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{p}^{2}}$=1(m>p>0)與雙曲線C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{p}^{2}}$=1(n>0)有公共的焦點F1,F(xiàn)2,設(shè)M為C1與C2在第一象限內(nèi)的交點,|F1F2|=2c.則( 。
A.m2+n2=2c2,且∠F1MF2>$\frac{π}{2}$B.m2+n2=2c2,且∠F1MF2=$\frac{π}{2}$
C.m2+n2=4c2,且∠F1MF2>$\frac{π}{2}$D.m2+n2=4c2,且∠F1MF2=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知{an}是公差為2的等差數(shù)列,若a1,a3,a4成等比數(shù)列,則a2=( 。
A.-4B.-8C.-10D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分圖象如圖所示,則y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范圍是( 。
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為2,點Q($\frac{{a}^{2}}{\sqrt{{a}^{2}-^{2}}}$,0)在直線l:x=3上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若O為坐標(biāo)原點,P為直線l上一動點,過點P作直線與橢圓相切點于點A,求△POA面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x-$\frac{4}{m}$|+|x+m|,(m>0)
(I)證明:f(x)≥4
(II)若f(1)>5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2017年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進行了統(tǒng)計,得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)246810
粉絲數(shù)量y(單位:萬人)10204080100
(1)若該演員的粉絲數(shù)量g(x)≤g(1)=0與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并就此分析,該演員上春晚12次時的粉絲數(shù)量;
(2)若用$\frac{{y}_{i}}{{x}_{i}}$(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”(四舍五入,精確到整數(shù)),從這5個“即時均值”中任選2數(shù),記所選的2數(shù)之和為隨機變量η,求η的分布列與數(shù)學(xué)期望.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.下表是某位理科學(xué)生連續(xù)5次月考的物理、數(shù)學(xué)的成績,結(jié)果如下:
次數(shù)12345
物理(x分)9085746863
數(shù)學(xué)(y分)1301251109590
(Ⅰ)求該生5次月考物理成績的平均分和方差;
(Ⅱ)一般來說,學(xué)生的數(shù)學(xué)成績與物理成績有較強的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個變量x,y的線性回歸方程.(小數(shù)點后保留一位有效數(shù)字)
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\overline{x}$,$\overline{y}$表示樣本均值
參考數(shù)據(jù):902+852+742+682+632=29394,
90×130×85×125×74×110×68×95+63×90=42595.

查看答案和解析>>

同步練習(xí)冊答案