如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB=,CE=EF=1.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.

【答案】分析:(Ⅰ)證明平面BDE外的直線AF平行平面BDE內(nèi)的直線GE,即可證明AF∥平面BDE;
(Ⅱ)證明CF垂直平面BDF內(nèi)的兩條相交直線:BD、EG,即可證明求CF⊥平面BDF;
解答:證明:(Ⅰ)設(shè)AC于BD交于點G.
因為EF∥AG,且EF=1,AG=AC=1,
所以四邊形AGEF為平行四邊形,
所以AF∥EG,
因為EG?平面BDE,AF?平面BDE,
所以AF∥平面BDE.
(Ⅱ)連接FG.因為EF∥CG,EF=CG=1,
且CE=1,所以平行四邊形CEFG為菱形.所以CF⊥EG.
因為四邊形ABCD為正方形,所以BD⊥AC.
又因為平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,
所以BD⊥平面ACEF.
所以CF⊥BD.又BD∩EG=G,
所以CF⊥平面BDE.
點評:本題考查直線與平面垂直的判定,直線與平面平行的判定,考查空間想象能力,邏輯思維能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、如圖把正方形ABCD沿對角線BD折成直二面角,對于下面結(jié)論:
①AC⊥BD;
②CD⊥平面ABC;
③AB與BC成60°角;
④AB與平面BCD成45°角.
則其中正確的結(jié)論的序號為
①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<
2
),則MN的長的最小值為 ( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求證:AB⊥平面ADE;
(II)(理)在線段BE上存在點M,使得直線AM與平面EAD所成角的正弦值為
6
3
,試確定點M的位置.
(文)若AD=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•溫州二模)如圖,正方形ABCD與正方形CDEF所成的二面角為60°,則直線EC與直線AD所成的角的余弦值為
2
4
2
4

查看答案和解析>>

同步練習冊答案