已知函數(shù)(a∈R,a為常數(shù)).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若f(x)在上的最大值為1,求a的值.
【答案】分析:(1)和差化積把原函數(shù)進(jìn)行簡化成2sin(x+)+a,可知函數(shù)的最小正周期.
(2)根據(jù)正弦函數(shù)的單調(diào)性,求出函數(shù)的最值,進(jìn)而求出a的值.
解答:解:(Ⅰ)∵,
∴T=2π.
(Ⅱ)∵


∴f(x)的最大值為2+a.
∴2+a=1,解得a=-1.
點(diǎn)評:本題主要考查正弦函數(shù)的兩角和公式.注意熟練掌握和差化積的公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果f(x0)是函數(shù)f(x)的一個極值,稱點(diǎn)(x0,f(x0))是函數(shù)f(x)的一個極值點(diǎn).已知函數(shù)f(x)=(ax-b)e
a
x
(x≠0且a≠0)
(1)若函數(shù)f(x)總存在有兩個極值點(diǎn)A,B,求a,b所滿足的關(guān)系;
(2)若函數(shù)f(x)有兩個極值點(diǎn)A,B,且存在a∈R,求A,B在不等式|x|<1表示的區(qū)域內(nèi)時實(shí)數(shù)b的范圍.
(3)若函數(shù)f(x)恰有一個駐點(diǎn)A,且存在a∈R,使A在不等式
|x|<1
|y|<e2
表示的區(qū)域內(nèi),證明:0≤b<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的最小值;
(II)當(dāng)a=3時,求函數(shù)h(x)的單調(diào)區(qū)間及極值;
(III)若對任意的x1,x2∈(0,+∞),x1≠x2,函數(shù)h(x)滿足
h(x1)-h(x2)
x1-x2
,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=(a+1)x,h(x)=x2+lg|a+2|,f(x)=g(x)+h(x),其中a∈R且a≠-2.
(1)若f(x)為偶函數(shù),求a的值;
(2)命題p:函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù),命題q:函數(shù)g(x)是減函數(shù),如果p或q為真,p且q為假,求a的取值范圍.
(3)在(2)的條件下,比較f(2)與3-lg2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的最小值;
(II)當(dāng)a=3時,求函數(shù)h(x0的單調(diào)區(qū)間及極值;
(III)若對任意的x1,x2∈(0,+∞),x1≠x2,函數(shù)h(x)滿足
h(x1)-h(x2)
x1-x2
>-1
,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案