【題目】已知函數(shù)).

1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;

2)若對于任意,都有成立,試求a的取值范圍.

【答案】1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是 2.

【解析】

1)對求導,由曲線在點處的切線與直線垂直,可得,可得值,代入可得函數(shù)的單調(diào)區(qū)間;

2)對求導,可得其遞增遞減區(qū)間,可得其極小值點,函數(shù)取得最小值,由對于任意,成立,只需最小值大于,可得a的取值范圍.

解:(1)直線的斜率為1,函數(shù)的定義域為

因為,

所以,所以,

所以,

解得;由解得

所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

2

解得;由解得

所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

所以當時,函數(shù)取得最小值

因為對于任意都有成立,

只需即可.

,解得,

所以a的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡和智能手機的普及與快速發(fā)展,許多可以解答各學科問題的搜題軟件走紅.有教育工作者認為:網(wǎng)搜答案可以起到拓展思路的作用,但是對多數(shù)學生來講,容易產(chǎn)生依賴心理,對學習能力造成損害.為了了解網(wǎng)絡搜題在學生中的使用情況,某校對學生在一周時間內(nèi)進行網(wǎng)絡搜題的頻數(shù)進行了問卷調(diào)查,并從參與調(diào)查的學生中抽取了男、女學生各50人進行抽樣分析,得到如下樣本頻數(shù)分布表:

將學生在一周時間內(nèi)進行網(wǎng)絡搜題頻數(shù)超過20次的行為視為經(jīng)常使用網(wǎng)絡搜題,不超過20次的視為偶爾或不用網(wǎng)絡搜題”.

1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫,并判斷是否在犯錯誤的概率不超過1%的前提下有把握認為使用網(wǎng)絡搜題與性別有關?

2)將上述調(diào)查所得到的頻率視為概率,從該校所有參與調(diào)查的學生中,采用隨機抽樣的方法每次抽取一個人,抽取4人,記經(jīng)常使用網(wǎng)絡搜題的人數(shù)為,若每次抽取的結果是相互獨立的,求隨機變量的分布列和數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《朗讀者》是一檔文化情感類節(jié)目,以個人成長、情感體驗、背景故事與傳世佳作相結合的方式,選用精美的文字,用最平實的情感讀出文字背后的價值,深受人們的喜愛.為了了解人們對該節(jié)目的喜愛程度,某調(diào)查機構隨機調(diào)查了,兩個城市各100名觀眾,得到下面的列聯(lián)表.

非常喜愛

喜愛

合計

城市

60

100

城市

30

合計

200

完成上表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認為觀眾的喜愛程度與所處的城市有關?

附參考公式和數(shù)據(jù):(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)當時,求曲線在點處切線的方程;

(2)當時,求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】。

(1)求的單調(diào)區(qū)間;

(2)討論零點的個數(shù);

(3)當時,設恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)萬元.

(1)若使每臺機器人的平均成本最低,問應買多少臺?

(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量q(m) (單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少百分之幾?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù),.

(1) 若是函數(shù)的導函數(shù),當時,解關于的不等式;

(2) 若 上是單調(diào)增函數(shù),求的取值范圍;

(3) 當時,求整數(shù)的所有值,使方程上有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)當x≥0時,f(x)≥mx-3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過橢圓E1ab0)上一動點P向圓Ox2+y2b2引兩條切線PAPB,切點分別是AB.直線AB分別與x軸,y軸交于點MNO為坐標原點).

1)若在橢圓E上存在點P,滿足PAPB,求橢圓E的離心率的取值范圍;

2)求證:在橢圓E內(nèi),存在一點C滿足|CO||CA||CP||CB|;

3)若橢圓E的短軸長為2,△MON面積的最小值為,求橢圓E的方程.

查看答案和解析>>

同步練習冊答案