【題目】已知橢圓 過點,點, 是橢圓上異于長軸端點的兩個點.

(1)求橢圓的離心率;

(2)已知直線 ,且,垂足為, ,垂足為,若,求中點的軌跡方程.

【答案】(1) ;(2) 點的軌跡方程為).

【解析】試題分析:(1)點帶入橢圓方程,解得,易得橢圓的離心率;(2),且,易得: .分類討論直線AB的斜率情況,

聯(lián)立橢圓方程,易得: ,借助韋達定理,易得).

試題解析:

(1)依題意, ,解得

故橢圓的方程為,則其離心率為

(2)設(shè)直線軸相交于點, ,

由于,即,且,

, (舍去)或,

即直線經(jīng)過點,設(shè), 的中點,

①直線垂直于軸時,則的重擔(dān)為;

②直線軸不垂直時,設(shè)的方程為,則

整理得

, ,

消去,整理得).經(jīng)檢驗,點也滿足此方程.

綜上所述,點的軌跡方程為).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】多面體 , 在平面上的射影是線段的中點.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù))是定義域為的奇函數(shù).

(1)若,試求不等式的解集;

(2)若,且,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;

②若f(x)=2x﹣2﹣x,則x∈R,f(﹣x)=﹣f(x);

③若f(x)=x+,則x0∈(0,+∞),f(x0)=1;

④等差數(shù)列{an}的前n項和為Sn,若a4=3,則S7=21;

⑤在△ABC中,若A>B,則sinA>sinB.

其中真命題是____.(只填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax3x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個公共點O(0,0)與A(xA , 0)(xA>0);
(1)用反證法證明常數(shù)c≠0;
(2)如果 ,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示:

(1)試計算該產(chǎn)品收益率的中位數(shù);

(2)若該產(chǎn)品的售價(元)與銷量(萬件)之間有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組的對應(yīng)數(shù)據(jù):

售價(元)

25

30

38

45

52

銷量(萬份)

7.5

7.1

6.0

5.6

4.8

據(jù)此計算出的回歸方程為,求的值;

(3)若從上述五組銷量中隨機抽取兩組,求兩組銷量中恰有一組超過6萬件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對甲、乙的學(xué)習(xí)成績進行抽樣分析,各抽五門功課,得到的觀測值如表:

60

80

70

90

70

80

60

70

80

75

問:甲、乙誰的平均成績較好?誰的各門功課發(fā)展較平衡?(
A.甲的平均成績較好,乙的各門功課發(fā)展較平衡
B.甲的平均成績較好,甲的各門功課發(fā)展較平衡
C.乙的平均成績較好,甲的各門功課發(fā)展較平衡
D.乙的平均成績較好,乙的各門功課發(fā)展較平衡

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex (e為自然對數(shù)的底數(shù)).
(1)求函數(shù)y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x∈(﹣1,+∞)時,證明:f(x)>0.

查看答案和解析>>

同步練習(xí)冊答案