【題目】函數(shù)y=ax3﹣x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個(gè)公共點(diǎn)O(0,0)與A(xA , 0)(xA>0);
(1)用反證法證明常數(shù)c≠0;
(2)如果 ,求函數(shù)的解析式.
【答案】
(1)解:假設(shè)c=0,則y=ax3﹣x2=x2(ax﹣1);
∴ 這與圖象所給的:
當(dāng)0<x<xA時(shí),f(x)>0矛盾,∴c≠0
(2)解:由(1)知c≠0,∴y=x(ax2﹣x+c)
∵圖象與x軸僅有兩個(gè)公共點(diǎn),
∴方程ax2﹣x+c=0(a≠0)有二等根 .
由韋達(dá)定理 ,∴ ,∴
【解析】分析:(1)根據(jù)反證明法的證明方法,先假設(shè)c=0,則y=ax3﹣x2=x2(ax﹣1),這與圖象所給的矛盾,從而得出c≠0;(2)由(1)知c≠0,得出y=x(ax2﹣x+c),圖象與x軸僅有兩個(gè)公共點(diǎn),得出方程ax2﹣x+c=0(a≠0)有二等根 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)a=0時(shí),設(shè)函數(shù)g(x)=xf(x)﹣k(x+2)+2.若函數(shù)g(x)在區(qū)間 上有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海南中學(xué)對高二學(xué)生進(jìn)行心理障礙測試得到如下列聯(lián)表:
焦慮 | 說謊 | 懶惰 | 總計(jì) | |
女生 | 5 | 10 | 15 | 30 |
男生 | 20 | 10 | 50 | 80 |
總計(jì) | 25 | 20 | 65 | 110 |
試說明在這三種心理障礙中哪一種與性別關(guān)系最大?
參考數(shù)據(jù):K2=
P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(I)若曲線在點(diǎn)處的切線平行于軸,求的值;
(II)求函數(shù)的極值;
(III)當(dāng)時(shí),若直線與曲線沒有公共點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 過點(diǎn),點(diǎn), 是橢圓上異于長軸端點(diǎn)的兩個(gè)點(diǎn).
(1)求橢圓的離心率;
(2)已知直線: ,且,垂足為, ,垂足為,若且,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)椋ī仭,a)∪(a,+∞),f(x)≥0的解集為M,f(x)<0的解集為N,則下列結(jié)論正確的是( 。
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育局委托調(diào)查機(jī)構(gòu)對本市中小學(xué)學(xué)校使用“微課掌上通”滿意度情況進(jìn)行調(diào)查.隨機(jī)選擇小學(xué)和中學(xué)各50所學(xué)校進(jìn)行調(diào)查,調(diào)查情況如表:
評分等級 | ☆ | ☆☆ | ☆☆☆ | ☆☆☆☆ | ☆☆☆☆☆ |
小學(xué) | 2 | 7 | 9 | 20 | 12 |
中學(xué) | 3 | 9 | 18 | 12 | 8 |
(備注:“☆”表示評分等級的星級,例如“☆☆☆”表示3星級.)
(1)從評分等級為5星級的學(xué)校中隨機(jī)選取兩所學(xué)校,求恰有一所學(xué)校是中學(xué)的概率;
(2)規(guī)定:評分等級在4星級以上(含4星)為滿意,其它星級為不滿意.完成下列2×2列聯(lián)表并幫助判斷:能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為使用是否滿意與學(xué)校類別有關(guān)系?
學(xué)校類型 | 滿意 | 不滿意 | 總計(jì) |
小學(xué) | 50 | ||
中學(xué) | 50 | ||
總計(jì) | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求解下列問題(1)求函數(shù)f(x)的定義域;(2)求f(﹣1),f(12)的值;.
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣1),f(12)的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因?yàn)?6=52﹣32 , 所以16∈A,研究下列問題:
(1)1,2,3,4,5,6六個(gè)數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2)討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個(gè)普通的結(jié)論,不必證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com