設(shè)函數(shù)f(x)=
eXx2+ax+a
,其中a為實(shí)數(shù).
(Ⅰ)若f(x)的定義域?yàn)镽,求a的取值范圍;
(Ⅱ)當(dāng)f(x)的定義域?yàn)镽時(shí),求f(x)的單減區(qū)間.
分析:(Ⅰ)f(x)的定義域?yàn)镽,說明分母不為零,利用判別式直接求a的取值范圍;
(Ⅱ)f(x)的定義域?yàn)镽時(shí),求導(dǎo)數(shù),導(dǎo)數(shù)為0確定x的值,根據(jù)a的范圍,確定導(dǎo)數(shù)的符合,求f(x)的單減區(qū)間.
解答:解:(Ⅰ)f(x)的定義域?yàn)镽,
∴x2+ax+a≠0恒成立,∴△=a2-4a<0,∴0<a<4,
即當(dāng)0<a<4時(shí)f(x)的定義域?yàn)镽.

(Ⅱ)由題意可知:f′(x)=
x(x+a-2)ex
(x2+ax+a)2
,令f'(x)≤0,得x(x+a-2)≤0.
由f'(x)=0,得x=0或x=2-a,
又∵0<a<4,∴0<a<2時(shí),由f'(x)<0得0<x<2-a;
當(dāng)a=2時(shí),f'(x)≥0;當(dāng)2<a<4時(shí),由f'(x)<0得2-a<x<0,
即當(dāng)0<a<2時(shí),f(x)的單調(diào)減區(qū)間為(0,2-a);
當(dāng)2<a<4時(shí),f(x)的單調(diào)減區(qū)間為(2-a,0).
點(diǎn)評(píng):本題考查函數(shù)的定義域及其求法,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查轉(zhuǎn)化思想,分類討論思想,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥0時(shí)f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、設(shè)函數(shù)f(x)=ex[x2-(1+a)x+1](x∈R),
(I)若曲線y=f(x)在點(diǎn)P(0,f(0))處的切線與直線y=x+4平行.求a的值;
(II)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+aex(x∈R)是奇函數(shù),則實(shí)數(shù)a=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex
(I)求證:f(x)≥ex;
(II)記曲線y=f(x)在點(diǎn)P(t,f(t))(其中t<0)處的切線為l,若l與x軸、y軸所圍成的三角形面積為S,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù)),g(x)=x2-x,記h(x)=f(x)+g(x).
(1)h′(x)為h(x)的導(dǎo)函數(shù),判斷函數(shù)y=h′(x)的單調(diào)性,并加以證明;
(2)若函數(shù)y=|h(x)-a|-1=0有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案