【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應國家精準扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應的管理時間的關(guān)系如下表所示:

土地使用面積(單位:畝)

1

2

3

4

5

管理時間(單位:月)

8

10

13

25

24

并調(diào)查了某村300名村民參與管理的意愿,得到的部分數(shù)據(jù)如下表所示:

愿意參與管理

不愿意參與管理

男性村民

150

50

女性村民

50

1)求出相關(guān)系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關(guān)?

2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關(guān)性?

3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學期望。

參考公式:

其中。臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考數(shù)據(jù):

【答案】(1)線性相關(guān);(2)有;(3詳見解析.

【解析】

1)分別求出,從而,,求出,從而得到管理時間與土地使用面積線性相關(guān).

2)完善列聯(lián)表,求出,從而有的把握認為村民的性別與參與管理的意愿具有相關(guān)性.

3的可能取值為0,12,3,從該貧困縣中隨機抽取一名,取到不愿意參與管理的男性村民的概率為,由此能求出的分布列和數(shù)學期望.

解:依題意:

,

故管理時間與土地使用面積線性相關(guān)。

2)依題意,完善表格如下:

愿意參與管理

不愿意參與管理

總計

男性村民

150

50

200

女性村民

50

50

100

總計

200

100

300

計算得的觀測值為

故有99.9%的把握認為村民的性別與參與管理的意愿具有相關(guān)性。

3)依題意,的可能取值為0,1,2,3,從該貧困縣中隨機抽取一名,則取到不愿意參與管理的男性村民的概率為,

的分布列為

X

0

1

2

3

P

則數(shù)學期望為

(或由,得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若對任意,恒成立,求的取值范圍;

(2)若函數(shù)有兩個不同的零點,,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知(是常數(shù),).

(1)當時,求不等式的解集;

(2)若函數(shù)恰有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標系的極坐標方程為,直線l的參數(shù)方程為,(其中為參數(shù))直線l與交于A,B兩個不同的點.

求傾斜角的取值范圍;

求線段AB中點P的軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)當時,求曲線在點處的切線方程;

(2)記的導函數(shù)為,若不等式在區(qū)間上恒成立,求的取值范圍;

(3)設(shè)函數(shù),是函數(shù)的導函數(shù),若存在兩個極值點,,且滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求的單調(diào)區(qū)間;

(2)如果對任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《紅海行動》是一部現(xiàn)代海軍題材影片,該片講述了中國海軍“蛟龍突擊隊”奉命執(zhí)行撤僑任務的故事.撤僑過程中,海軍艦長要求隊員們依次完成六項任務,并對任務的順序提出了如下要求:重點任務必須排在前三位,且任務、必須排在一起,則這六項任務的不同安排方案共有_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正六邊形的中心為,、、、、、這七個點中的任意兩點,以其中一點為起點、另一點為終點作向量.任取其中兩個向量,以它們的數(shù)量積的絕對值作為隨機變量.試求的概率分布列及其數(shù)學期望.

查看答案和解析>>

同步練習冊答案