已知橢圓:和圓,過(guò)橢圓上一點(diǎn)引圓的兩
條切線,切點(diǎn)分別為. 若橢圓上存在點(diǎn),使得,則橢圓離心率的取值范圍
是(     )
A.B.C.D.
D

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010726533581.png" style="vertical-align:middle;" />,所以,及圓的性質(zhì)可得,
所以,所以,所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010726735422.png" style="vertical-align:middle;" />,
所以.
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查橢圓的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于
基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線C的直角坐標(biāo)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為 __________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,線段與y軸的交點(diǎn)M滿(mǎn)足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點(diǎn),當(dāng),且滿(mǎn)足時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是雙曲線的左、右焦點(diǎn),過(guò)且垂直于軸的直線與雙曲線交于兩點(diǎn),若△是銳角三角形,則該雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線所截得的線段的長(zhǎng)為8,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知△ABC頂點(diǎn),頂點(diǎn)B在橢圓上,則      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓的兩個(gè)焦點(diǎn)與它的短軸的兩個(gè)端點(diǎn)是一個(gè)正方形的四個(gè)頂點(diǎn),則橢圓的離心率為         .    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2。

查看答案和解析>>

同步練習(xí)冊(cè)答案