若橢圓的兩個焦點(diǎn)與它的短軸的兩個端點(diǎn)是一個正方形的四個頂點(diǎn),則橢圓的離心率為         .    
.

試題分析:因?yàn)闄E圓的兩個焦點(diǎn)與它的短軸的兩個端點(diǎn)是一個正方形的四個頂點(diǎn),所以借助于橢圓的對稱性,橢圓的離心率=cos45°=。

點(diǎn)評:簡單題,注意到橢圓的離心率即。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線方程為x-2y=1.則它的右焦點(diǎn)坐標(biāo)是(  )
A.(,0)B.(,0)C.(,0)D.(,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓:和圓,過橢圓上一點(diǎn)引圓的兩
條切線,切點(diǎn)分別為. 若橢圓上存在點(diǎn),使得,則橢圓離心率的取值范圍
是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點(diǎn),若cam的等比中項(xiàng),n2是2m2c2的等差中項(xiàng),則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

ABC的兩個頂點(diǎn)坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊ABAC的斜率的乘積是-,求頂點(diǎn)A的軌跡方程.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,軸截面為邊長為等邊三角形的圓錐,過底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( 。
A.  B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)是F拋物線與橢圓的公共焦點(diǎn),且橢圓的離心率為

(1)求橢圓的方程;
(2)過拋物線上一點(diǎn)P,作拋物線的切線,切點(diǎn)P在第一象限,如圖,設(shè)切線與橢圓相交于不同的兩點(diǎn)A、B,記直線OP,F(xiàn)A,FB的斜率分別為(其中為坐標(biāo)原點(diǎn)),若,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于兩點(diǎn),使得.
(1)求橢圓的方程;(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的一條漸近線方程是,它的一個焦點(diǎn)在拋物線的準(zhǔn)線上,則雙曲線的方程為         

查看答案和解析>>

同步練習(xí)冊答案