【題目】已知函數(shù),其中.

1)試討論函數(shù)的單調(diào)性;

2)若,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的最大值.

【答案】1)見解析;(2.

【解析】

1)先求導(dǎo),再根據(jù)定義域和根的大小,分, 兩種情況討論求解.

2)根據(jù)(1),當(dāng)時(shí),的單調(diào)遞,故不存在兩個(gè)零點(diǎn),當(dāng)時(shí),由(1)可知,要使函數(shù)有兩個(gè)零點(diǎn),則需,即,令,研究其最大值,再結(jié)合,確定實(shí)數(shù)的最大值.

1)∵,

當(dāng)時(shí),,此時(shí)的增區(qū)間為,

當(dāng)時(shí),由可得,此時(shí)的增區(qū)間為,減區(qū)間為,

綜上:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,

當(dāng)時(shí),的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為.

2)由(1)可知,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,故不存在兩個(gè)零點(diǎn),

當(dāng)時(shí),由(1)可知,

要使函數(shù)有兩個(gè)零點(diǎn),則,

,

設(shè),

,

上的減函數(shù),

,,

,使,

時(shí),

時(shí),,

,∴,

又∵,

,∴,

此時(shí),

符合題意,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.

1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;

2)用X表示比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求隨機(jī)變量X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,為線段的中點(diǎn),如圖1,沿折起至,使,如圖2所示.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一2班學(xué)生每周用于數(shù)學(xué)學(xué)習(xí)的時(shí)間(單位:)與數(shù)學(xué)成績(單位:分)之間有如下數(shù)據(jù):

24

15

23

19

16

11

20

16

17

13

92

79

97

89

64

47

83

68

71

59

某同學(xué)每周用于數(shù)學(xué)學(xué)習(xí)的時(shí)間為18小時(shí),試預(yù)測該生數(shù)學(xué)成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)是, ,且橢圓經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過左焦點(diǎn)且傾斜角為45°的直線與橢圓交于兩點(diǎn),求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)若有唯一的零點(diǎn),試求的值.(注:為取整函數(shù),表示不超過的最大整數(shù),如;以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3x2axa,x∈R,其中a>0.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價(jià)為6400元,一塊長為米的玻璃造價(jià)為元.假設(shè)所有立柱的粗細(xì)都忽略不計(jì),且不考慮其他因素,記總造價(jià)為元(總造價(jià)=立柱造價(jià)+玻璃造價(jià)).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),怎樣設(shè)計(jì)能使總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,曲線在點(diǎn)處的切線在兩坐標(biāo)軸上的截距之和為2,求的值

(2)若對于任意的及任意的總有成立.求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案