【題目】已知函數(shù) .
(Ⅰ)若在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)若有唯一的零點(diǎn),試求的值.(注:為取整函數(shù),表示不超過(guò)的最大整數(shù),如;以下數(shù)據(jù)供參考:)
【答案】(Ⅰ);(Ⅱ).
【解析】
試題分析:(1)求出f(x)的導(dǎo)數(shù),令h(x)=2x3﹣ax﹣2,x∈(0,+∞),求出導(dǎo)數(shù),討論a的符號(hào),判斷單調(diào)性,即可得到所求a的范圍;(2)由(1)可知:f(1)=3知x∈(0,1)時(shí),f(x)>0,則x0>1,討論f(x)在x>1的單調(diào)性,再由零點(diǎn)的定義和極值點(diǎn)的定義,可得x0的方程,構(gòu)造函數(shù),判斷單調(diào)性,由零點(diǎn)存在性定理知 t(2)<0,t(3)>0,即可得到所求值.
試題解析:
(Ⅰ)函數(shù) 的定義域?yàn)?/span>,
令,則,
當(dāng)時(shí),恒成立,在上為增函數(shù),
又函數(shù)在內(nèi)有一個(gè)零點(diǎn),
且當(dāng)時(shí),時(shí),,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以在區(qū)間內(nèi)有極小值.
當(dāng)時(shí),,即時(shí),恒成立,
函數(shù)在單調(diào)遞減,此時(shí)函數(shù)無(wú)極值,
綜上可得:在區(qū)間內(nèi)有極值時(shí)實(shí)數(shù)的取值范圍是,
(Ⅱ)①當(dāng)時(shí),得,不滿足定義域,不存在.
②當(dāng)時(shí),由(Ⅰ)知:若有唯一的零點(diǎn)為極小值點(diǎn),
所以,
③當(dāng)時(shí),函數(shù)的定義域?yàn)?/span>,
由(Ⅰ)可知:知時(shí),
又在區(qū)間上只有一個(gè)極小值點(diǎn)記為,
且時(shí),函數(shù)單調(diào)遞減,
時(shí),,函數(shù)單調(diào)遞增,
由題意可知:即為,
消去可得:,
即,
令,則在區(qū)間上單調(diào)遞增,
又,
,
由零點(diǎn)存在性定理知
綜上可得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了引導(dǎo)居民合理用電,國(guó)家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級(jí)別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:
居民用電戶編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計(jì)算A居民用電戶用電410度時(shí)應(yīng)電費(fèi)多少元?
現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
以表中抽到的10戶作為樣本估計(jì)全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺(tái)舉辦的聽(tīng)曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂(lè)曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對(duì),則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對(duì)歌名的概率是,乙猜對(duì)歌名的概率是,丙猜對(duì)歌名的概率是,甲、乙、丙猜對(duì)與否互不影響.
(I)求該小組未能進(jìn)入第二輪的概率;
(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知矩形的面積為100,則這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),矩形的周長(zhǎng)最短?最短周長(zhǎng)是多少?
(2)已知矩形的周長(zhǎng)為36,則這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),它的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)試討論函數(shù)的單調(diào)性;
(2)若,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線的左,右焦點(diǎn)分別為F1,F2,過(guò)F1的直線l交雙曲線左支于A,B兩點(diǎn),則|BF2|+|AF2|的最小值為( )
A. B. 11
C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(1)過(guò)作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;
(2)在(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的單調(diào)性;
(2)當(dāng)在上的最小值是時(shí),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型高端制造公司為響應(yīng)《中國(guó)制造2025》中提出的堅(jiān)持“創(chuàng)新驅(qū)動(dòng)、質(zhì)量為先、綠色發(fā)展、結(jié)構(gòu)優(yōu)化、人才為本”的基本方針,準(zhǔn)備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費(fèi)用(百萬(wàn)元)和產(chǎn)品銷量(萬(wàn)臺(tái))的具體數(shù)據(jù):
(1)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系
(i)求出關(guān)于的線性回歸方程(系數(shù)精確到);
(ii)若2018年6月份研發(fā)投人為25百萬(wàn)元,根據(jù)所求的線性回歸方程估計(jì)當(dāng)月產(chǎn)品的銷量;
(2)公司在2017年年終總結(jié)時(shí)準(zhǔn)備從該年8~12月份這5個(gè)月中抽取3個(gè)月的數(shù)據(jù)進(jìn)行重點(diǎn)分析,求沒(méi)有抽到9月份數(shù)據(jù)的概率.
參考數(shù)據(jù): ,.
參考公式:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com