精英家教網 > 高中數學 > 題目詳情
設函數y=f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程為24x+y-12=0.
(Ⅰ)求c,d;
(Ⅱ)若函數在x=2處取得極值-16,試求函數解析式并確定函數的單調區(qū)間.
分析:(Ⅰ)對函數求導f'(x)=3ax2+2bx+c,由題意可得f'(0)=-24,f(0)=12,代入可求c,d
(Ⅱ)由已知得:
f(2)=16
f′(2)=0
,代入可求a,b,然后代入到f'(x),由f'(x)>0得,由f'(x)<0可分別求函數f(x)的單調增區(qū)間,單調減區(qū)間
解答:解:(Ⅰ)∵f'(x)=3ax2+2bx+c,
∴f'(0)=c;-----------------(1分)
∵切線24x+y-12=0的斜率為k=-24,∴c=-24;-----------------(2分)
把x=0代入24x+y-12=0得y=12,∴P(0,12),-----------------(3分)
∴d=12.
∴c=-24,d=12.-----------------(4分)
(Ⅱ)由(Ⅰ)f(x)=ax3+bx2-24x+12
由已知得:
f(2)=16
f′(2)=0
8a+4b-36=-16
12a+4b-24=0

a=1
b=3
-----------------(5分)
∴f(x)=x3+3x2-24x+12
∴f'(x)=3x2+6x-24=3(x2+2x-8)=3(x+4)(x-2)-----------------(6分)
由f'(x)>0得,x<-4或x>2;
由f'(x)<0得,-4<x<2;-----------------(7分)
∴f(x)的單調增區(qū)間為(-∞,-4),(2,+∞);
單調減區(qū)間為(-4,2).-----------------(8分)
點評:本題主要考查了導數的幾何意義的應用:由切線的斜率求解函數在一點處的導數值,導數在函數極值求解、單調區(qū)間的求解中的應用,屬于函數的導數知識的綜合應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

13、設函數y=f(x)存在反函數y=f-1(x),且函數y=x-f(x)的圖象過點(1,2),則函數y=f-1(x)-x的圖象一定過點
(-1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義在R+上的函數,并且滿足下面三個條件:①對任意正數x,y 都有f(xy)=f(x)+f(y);②當x>1時,f(x)<0;③f(3)=-1.
(1)求f(1),f(
19
)的值;
(2)證明:f(x)在R+上是減函數;
(3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)的導函數是y=f′(x),稱εyx=f′(x)•
x
y
為函數f(x)的彈性函數.
函數f(x)=2e3x彈性函數為
3x
3x
;若函數f1(x)與f2(x)的彈性函數分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數為
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)

(用εf 1xεf 2x,f1(x)與f2(x)表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義,對于給定的正數K,定義函數fK(x)=
f(x),f(x)≤k
k,f(x)>k
,取函數f(x)=2-x-e-x,若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),則K的最小值為
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義.對于給定的正數K,定義函數fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函數f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。

查看答案和解析>>

同步練習冊答案