【題目】已知數(shù)列滿足:,其中為實(shí)數(shù),為正整數(shù).

1)對(duì)任意實(shí)數(shù),求證:不成等比數(shù)列;

2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.

【答案】1)證明見(jiàn)解析;(2)當(dāng)時(shí),數(shù)列是等比數(shù)列.

【解析】

試題(1)證明否定性命題,可用反證法.如本題中可假設(shè)存在,使成等比數(shù)列,則可由來(lái)求,若求不出,說(shuō)明假設(shè)錯(cuò)誤,結(jié)論是不存在,,但這個(gè)式子化簡(jiǎn)后為,不可能成立,即不存在;(2)要判定是等比數(shù)列,由題意可先求出的遞推關(guān)系,,這時(shí)還不能說(shuō)明就是等比數(shù)列,還要求出,,只有當(dāng)時(shí),數(shù)列才是等比數(shù)列,因此當(dāng)時(shí),不是等比數(shù)列,當(dāng)時(shí),是等比數(shù)列.

1)證明:假設(shè)存在一個(gè)實(shí)數(shù),使是等比數(shù)列,則有,

矛盾.

所以不成等比數(shù)列. 6

2)因?yàn)?/span>

9

,

所以當(dāng)(為正整數(shù)),此時(shí)不是等比數(shù)列: 11

當(dāng)時(shí),,由上式可知(為正整數(shù)) ,

故當(dāng)時(shí),數(shù)列是以為首項(xiàng),-為公比的等比數(shù)列. 14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績(jī),得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

1)下表是這次抽查成績(jī)的頻數(shù)分布表,試求正整數(shù)、的值;

區(qū)間

[7580

[8085

[8590

[90,95

[95,100]

人數(shù)

50

a

350

300

b

2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績(jī)進(jìn)行分析,求抽取成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);

3)在根據(jù)(2)抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加座談會(huì),記其中成績(jī)?yōu)閮?yōu)秀的人數(shù)為X,求X的分布列與數(shù)學(xué)期望(即均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)歷法推測(cè)遵循以測(cè)為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對(duì)二十四節(jié)氣的晷(guǐ)影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其它節(jié)氣的晷影長(zhǎng)則使按照等差數(shù)列的規(guī)律計(jì)算得出的,下表為《周髀算經(jīng)》對(duì)二十四節(jié)氣晷影長(zhǎng)的記錄,其中寸表示115分(1分),已知《易經(jīng)》中記錄的冬至晷影長(zhǎng)為130.0寸,夏至晷影長(zhǎng)為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)應(yīng)為(

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

驚蟄(寒露)

晷影(寸)

135

節(jié)氣

春分(秋分)

清明(白露)

谷雨(處暑)

立夏(立秋)

小滿(大暑)

芒種(小暑)

夏至

晷影(寸)

75.5

16.0

A.72.4B.81.4C.82.0D.91.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為考查某種疫苗預(yù)防疾病的效果,進(jìn)行動(dòng)物實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下表:

未發(fā)病

發(fā)病

合計(jì)

未注射疫苗

40

注射疫苗

60

合計(jì)

100

100

200

現(xiàn)從所有試驗(yàn)動(dòng)物中任取一只,取到“注射疫苗”動(dòng)物的概率為.

1)求列聯(lián)表中的數(shù)據(jù)的值;

2)在圖中繪制發(fā)病率的條形統(tǒng)計(jì)圖,并判斷疫苗是否有效?

3)在出錯(cuò)概率不超過(guò)的條件下能否認(rèn)為疫苗有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,長(zhǎng)軸長(zhǎng)為4,,分別為橢圓的左,右焦點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn),面積的最大為,且取得最大值時(shí)為鈍角.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知圓,點(diǎn)為圓上任意一點(diǎn),過(guò)點(diǎn)的切線分別交橢圓兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的一個(gè)側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線與曲線相切,設(shè)的最大值為,數(shù)列的前n項(xiàng)和為,則(

A.存在,

B.為等差數(shù)列

C.對(duì)于,

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的平面展開(kāi)圖如圖所示,其中四邊形 ABCD 為正方形, E F 分別為PB PC 的中點(diǎn),在此幾何體中,下面結(jié)論中一定正確的是(

A.直線 AE 與直線 DF 平行B.直線 AE 與直線 DF 異面

C.直線 BF 和平面 PAD 相交D.直線 DF 平面 PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)僅有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案