【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的“中值點(diǎn)”,下列函數(shù):
①; ②; ③; ④中,在區(qū)間[O,1]上“中值點(diǎn)”多于一個的函數(shù)序號為( )
A. ①② B. ①③ C. ②③ D. ①④
【答案】D
【解析】分析:根據(jù)題意,“中值點(diǎn)”的幾何意義是在區(qū)間上存在點(diǎn),使得函數(shù)在該點(diǎn)的切線的斜率等于區(qū)間的兩個端點(diǎn)連線的斜率值,分別畫出四個函數(shù)的圖像,如圖,由此定義再結(jié)合函數(shù)的圖像與性質(zhì),對于四個選項(xiàng)逐個加以判斷,即得正確答案.
詳解:據(jù)題意,“中值點(diǎn)”的幾何意義是在區(qū)間上存在點(diǎn),使得函數(shù)在該點(diǎn)的切線的斜率等于區(qū)間的兩個端點(diǎn)連線的斜率值,如圖,
對于①,根據(jù)題意,在區(qū)間上的任何一點(diǎn)都是“中值點(diǎn)”,故①正確;
對于②,根據(jù)“中值點(diǎn)”函數(shù)的定義,拋物線在區(qū)間只存在一個“中值點(diǎn)”,故②不正確;
對于③,在區(qū)間只存在一個“中值點(diǎn)”,故③不正確;
對于④,根據(jù)對稱性,函數(shù)在區(qū)間存在兩個“中值點(diǎn)”,故④正確,故答案是①④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n)=,其中,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹木的高度為栽種時高度的3倍.
(1)栽種多少年后,該樹木的高度是栽種時高度的8倍;
(2)該樹木在栽種后哪一年的增長高度最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1 , 焦點(diǎn)為F2;以F1 , F2為焦點(diǎn),離心率e=的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動點(diǎn),且M在P與Q之間運(yùn)動.
當(dāng)m=1時,求橢圓C2的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面ABCD是正方形,AC與BD交于點(diǎn)O,底面ABCD,F(xiàn)為BE的中點(diǎn),.
(1)求證:平面ACF;
(2)求BE與平面ACE的所成角的正切值;
(3)在線段EO上是否存在點(diǎn)G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosx(sinx+cosx)﹣ .
(1)若0<α< , 且sinα= , 求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計(jì),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A. 6 B. 8 C. 12 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c∈(0,+∞).
(1)若a=6,b=5,c=4是△ABC邊BC,CA,AB的長,證明:cosA∈Q;
(2)若a,b,c分別是△ABC邊BC,CA,AB的長,若a,b,c∈Q時,證明:cosA∈Q;
(3)若存在λ∈(-2,2)滿足c2=a2+b2+λab,證明:a,b,c可以是一個三角形的三邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線C由上半橢圓C1: =1(a>b>0,y≥0)和部分拋物線C2:y=﹣x2+1(y≤0)連接而成,C1與C2的公共點(diǎn)為A,B,其中C1的離心率為 .
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1 , C2分別交于點(diǎn)P,Q(均異于點(diǎn)A,B),若AP⊥AQ,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com