已知等比數(shù)列
的各項均為正數(shù),且
成等差數(shù)列,
成等比數(shù)列.
(1)求數(shù)列
的通項公式;
(2)已知
,記
,
,求證:
(1)
;(2)參考解析
試題分析:(1)又等比數(shù)列
的各項均為正數(shù),且
成等差數(shù)列,
成等比數(shù)列.
可得到兩個等式,解方程組可得結(jié)論.
(2)由(1)可得數(shù)列
的通項,即可計算
,由于
是一個復合的形式,所以先計算通項式
.即可得到
.又由于
.即可得到結(jié)論.
試題解析:設(shè)等比數(shù)列
的公比為
,依題意可得
解得
.所以通項
.
(2)由(1)得
.所以
.由
.所以
.所以
即等價于證明
.
.所以
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在數(shù)列{
an}中,
,
,
(1)求數(shù)列
的通項公式
(2)設(shè)
(
),記數(shù)列
的前k項和為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
中,
其前
項和
滿足:
(1)試求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為銳角,且
,函數(shù)
,數(shù)列
的首項
,
.
(1)求函數(shù)
的表達式;(2)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知{a
n}是等差數(shù)列,a
1=1,公差d≠0,Sn為其前
項和,若a
1,a
2,a
5成等比數(shù)列,則S
8="(" )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
用數(shù)學歸納法證明
,在驗證n=1成立時,等式左邊是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在等差數(shù)列
中,
=
,則數(shù)列
的前11項和
=( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列{a
n}的通項公式
,則
=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)等差數(shù)列
的前
n項和為
,若
,則必定有
查看答案和解析>>