【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求函數(shù)在上的零點(diǎn)個(gè)數(shù).
【答案】(1)答案不唯一,見解析;(2)2個(gè)
【解析】
(1)對(duì)求導(dǎo)后,根據(jù)的正負(fù)對(duì)的正負(fù)進(jìn)行分情況討論,得出對(duì)應(yīng)單調(diào)性即可;
(2)方法一:對(duì)求導(dǎo)后,對(duì),,三種情況,結(jié)合零點(diǎn)存在性定理分別討論零點(diǎn)個(gè)數(shù);方法二:對(duì)求導(dǎo)后,對(duì),兩種情況,結(jié)合零點(diǎn)存在性定理分別討論零點(diǎn)個(gè)數(shù).
(1),其定義域?yàn)?/span>,,
①當(dāng)時(shí),因?yàn)?/span>,所以在上單調(diào)遞增,
②當(dāng)時(shí),令得,令得,
所以在上單調(diào)遞減,上單調(diào)遞增,
綜上所述,
當(dāng)時(shí),在上單調(diào)遞增,
當(dāng)時(shí),在單調(diào)遞減,單調(diào)遞增.
(2)方法一:由已知得,,則.
①當(dāng)時(shí),因?yàn)?/span>,所以在單調(diào)遞減,
所以,所以在上無(wú)零點(diǎn);
②當(dāng)時(shí),因?yàn)?/span>單調(diào)遞增,且,,
所以存在,使,
當(dāng)時(shí),,當(dāng)時(shí),,
所以在遞減,遞增,且,所以,
又因?yàn)?/span>,
所以,所以在上存在一個(gè)零點(diǎn),
所以在上有兩個(gè)零點(diǎn);
③當(dāng)時(shí),,所以在單調(diào)遞增,
因?yàn)?/span>,所以在上無(wú)零點(diǎn);
綜上所述,在上的零點(diǎn)個(gè)數(shù)為2個(gè).
方法二:由已知得,,則.
①當(dāng)時(shí),因?yàn)?/span>,所以在單調(diào)遞增,
所以,所以在上無(wú)零點(diǎn);
②當(dāng)時(shí),所以在單調(diào)遞增,
又因?yàn)?/span>,,
所以使,
當(dāng)時(shí),,當(dāng)時(shí),
所以在單調(diào)遞減,單調(diào)遞增,
且,所以,
又因?yàn)?/span>,所以,
所以在上存在唯一零點(diǎn),
所以在上存在兩個(gè)零點(diǎn),
綜上所述,在上的零點(diǎn)個(gè)數(shù)為2個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,右頂點(diǎn)為.若(為坐標(biāo)原點(diǎn))的三個(gè)內(nèi)角大小成等差數(shù)列.
(1)求橢圓的離心率;
(2)直線與橢圓交于兩點(diǎn),設(shè)直線,若面積的最大值為,且該橢圓短軸長(zhǎng)小于焦距,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測(cè)量其直徑后,整理得到下表:
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(I)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):
①;
②;
③.
判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級(jí)為甲;若僅滿足其中兩個(gè),則等級(jí)為乙,若僅滿足其中一個(gè),則等級(jí)為丙;若全部都不滿足,則等級(jí)為了.試判斷設(shè)備的性能等級(jí).
(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”.
①?gòu)脑O(shè)備的生產(chǎn)流水線上隨機(jī)抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望;
②從樣本中隨意抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月20日,第六屆世界互聯(lián)網(wǎng)大會(huì)發(fā)布了15項(xiàng)“世界互聯(lián)網(wǎng)領(lǐng)先科技成果”,其中有5項(xiàng)成果均屬于芯片領(lǐng)域,分別為華為高性能服務(wù)器芯片“鯤鵬920”、清華大學(xué)“面向通用人工智能的異構(gòu)融合天機(jī)芯片”、“特斯拉全自動(dòng)駕駛芯片”、寒武紀(jì)云端AI芯片、“思元270”、賽靈思“Versal自適應(yīng)計(jì)算加速平臺(tái)”.現(xiàn)有3名學(xué)生從這15項(xiàng)“世界互聯(lián)網(wǎng)領(lǐng)先科技成果”中分別任選1項(xiàng)進(jìn)行了解,且學(xué)生之間的選擇互不影響,則至少有1名學(xué)生選擇“芯片領(lǐng)域”的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們正處于一個(gè)大數(shù)據(jù)飛速發(fā)展的時(shí)代,對(duì)于大數(shù)據(jù)人才的需求也越來(lái)越大,其崗位大致可分為四類:數(shù)據(jù)開發(fā)、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)產(chǎn)品.某市2019年這幾類工作崗位的薪資(單位:萬(wàn)元/月)情況如下表所示:
薪資 崗位 | ||||
數(shù)據(jù)開發(fā) | ||||
數(shù)據(jù)分析 | ||||
數(shù)據(jù)挖掘 | ||||
數(shù)據(jù)產(chǎn)品 |
由表中數(shù)據(jù)可得該市各類崗位的薪資水平高低情況為( )
A.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析
B.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析
C.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析>數(shù)據(jù)產(chǎn)品
D.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析>數(shù)據(jù)開發(fā)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,AB是圓O:x2+y2=1的直徑,且點(diǎn)A在第一象限;圓O1:(x﹣a)2+y2=r2(a>0)與圓O外離,線段AO1與圓O1交于點(diǎn)M,線段BM與圓O交于點(diǎn)N,且,則a的取值范圍為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com