某同學(xué)利用暑假時間到一家商場勤工儉學(xué),該商場向他提供了三種付款方式:第一種,每天支付38圓;第二種,第一天付4元,第二天付8元,第三天付12元,以此類推:第三種,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你會選擇哪種方式領(lǐng)取報酬呢?

,,。
下面考察,,的大小?梢钥闯時,
因此,當(dāng)工作時間小于10天時,選用第一種付費方式,
 時,,,
因此,選用第三種付費方式。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè),當(dāng)時,對應(yīng)值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于y軸對稱,
且f(-2)>f(3),設(shè)m>-n>0.
(1) 試證明函數(shù)f(x)在(0,+∞)上是減函數(shù);
(2) 試比較f(m)和f(n)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知函數(shù)∈R且),.
(Ⅰ)若,且函數(shù)的值域為[0, +),求的解析式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)x∈[-2 , 2 ]時,是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(Ⅲ)設(shè),, 且是偶函數(shù),判斷是否大于零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
⑴ 若對一切實數(shù)x恒成立,求實數(shù)a的取值范圍。
⑵ 求在區(qū)間上的最小值的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)0≤x≤2,求函數(shù)y=的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案