11.已知α是鈍角,β是銳角,則α-β的范圍是(0°,180°).

分析 由α是鈍角,β是銳角,得到90°<α<180°,0<β<90°,即可求出α-β的范圍

解答 解:∵α是鈍角,β是銳角,
∴90°<α<180°,0<β<90°,
∴-90°<-β<0,
∴0°<α-β<180°,
故答案為:(0°,180°).

點評 本題考查了角的分類,以及角的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.四棱柱ABCD-A1B1C1D1的底面ABCD為矩形,AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,則AC1的長為(  )
A.$8\sqrt{2}$B.46C.$2\sqrt{23}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點M在線段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求平面MBQ與平面CBQ夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四面體P-ABCD中,△ABD是邊長為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=$\frac{2\sqrt{3}}{3}$.
(1)求證:PA⊥BD;
(2)已知E是PA上一點,且BE∥平面PCD.若PC=2,求點E到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x3-x-$\sqrt{x}$,g(x)=$\frac{a{x}^{2}+ax}{f(x)+\sqrt{x}}$+lnx
(1)求函數(shù)y=f(x)的零點個數(shù);
(2)若函數(shù)y=g(x)在(0,$\frac{1}{e}$)內(nèi)有極值,求實數(shù)a的取值范圍;
(3)對任意的t∈(1,+∞),s∈(0,1),求證:g(t)-g(s)>e+2-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)x,y滿足$\frac{{x}^{2}}{4}$+y2=x,則x2+y2有最大值16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a>0,且a≠1,命題p:函數(shù)y=loga(x+1)在x∈(0,+∞)上單調(diào)遞減,命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.若“p∨q”為假,則a的取值范圍為( 。
A.(1,$\frac{5}{2}$]B.(-∞,$\frac{1}{2}$]∪(1,$\frac{5}{2}$]C.[$\frac{1}{2}$,$\frac{5}{2}$)D.[$\frac{1}{2}$,1)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知隨機變量ξ服從正態(tài)分布N(1,σ2),若P(ξ>2)=0.2,則P(0≤ξ≤1)=( 。
A.0.2B.0.3C.0.4D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)f(x)是定義在R上的減函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足$\frac{f(x)}{f′(x)}$+x<2016.下面不等式正確的是 ( 。
A.f(x)>0B.f(x)<0C.2f(2018)>f(2017)D.2f(2018)≤f(2017)

查看答案和解析>>

同步練習(xí)冊答案