1.四棱柱ABCD-A1B1C1D1的底面ABCD為矩形,AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,則AC1的長(zhǎng)為( 。
A.$8\sqrt{2}$B.46C.$2\sqrt{23}$D.32

分析 畫(huà)出圖形,將$\overrightarrow{A{C}_{1}}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,兩邊平方求值,然后開(kāi)方求線段長(zhǎng)度.

解答 解:如圖因?yàn)?\overrightarrow{A{C}_{1}}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,
并且AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,
所以$|\overrightarrow{A{C}_{1}}{|}^{2}={\overrightarrow{AB}}^{2}+{\overrightarrow{A{D}^{\;}}}^{2}+{\overrightarrow{A{A}_{1}}}^{2}$$+2\overrightarrow{AB}•\overrightarrow{AD}+2\overrightarrow{AB}•\overrightarrow{A{A}_{1}}+2\overrightarrow{AD}•\overrightarrow{A{A}_{1}}$=4+16+36+0+2×2×6×$\frac{1}{2}$+2×4×$6×\frac{1}{2}$=92,
所以AC1=$\sqrt{92}=2\sqrt{23}$;
故選C.

點(diǎn)評(píng) 本題考查了利用平面向量求空間線段的長(zhǎng)度;關(guān)鍵是所求向量化,利用向量表示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|y=$\sqrt{x-1}$},B={x|-1≤2x-1≤3},則A∩B=( 。
A.[0,1]B.[1,2]C.[1,$\frac{3}{2}$]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)是定義在R上的奇函數(shù),滿足f(x+4)=f(x)+f(2),且對(duì)任意的x1,x2∈[0,2],都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立.現(xiàn)給出下列命題:①f(2)=0;②函數(shù)f(x)的圖象關(guān)于點(diǎn)(2,0)成對(duì)稱中心;③函數(shù)f(x)在(-4,0)上單調(diào)遞減;④函數(shù)f(x)在(-6,6)上有3個(gè)零點(diǎn).
其中正確命題的序號(hào)是①②③(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.我國(guó)南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分?jǐn)?shù)來(lái)表示數(shù)值的算法,其理論依據(jù)是:設(shè)實(shí)數(shù)x的不足近似值和過(guò)剩近似值分別為$\frac{a}$和$\fraczf3tjpl{c}$(a,b,c,d∈N*),則$\frac{b+d}{a+c}$是x的更為精確的不足近似值或過(guò)剩近似值.我們知道π=3.14159…,若令$\frac{31}{10}$<π<$\frac{49}{15}$,則第一次用“調(diào)日法”后得$\frac{16}{5}$是π的更為精確的過(guò)剩近似值,即$\frac{31}{10}$<π<$\frac{16}{5}$,若每次都取最簡(jiǎn)分?jǐn)?shù),那么第四次用“調(diào)日法”后可得π的近似分?jǐn)?shù)為(  )
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在幾何體ABCDE中,矩形BCDE的邊CD=2,BC=AB=1,∠ABC=90°,直線EB⊥平面ABC,P是線段AD上的點(diǎn),且AP=2PD,M為線段AC的中點(diǎn).
(Ⅰ)證明:BM∥平面ECP;
(Ⅱ)求二面角A-EC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.我國(guó)南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分?jǐn)?shù)來(lái)表示數(shù)值的算法,其理論依據(jù)是:設(shè)實(shí)數(shù)x的不足近似值和過(guò)剩近似值分別為$\frac{a}$和$\fracfhb5tvb{c}$(a,b,c,d∈N*),則$\frac{b+d}{a+c}$是x的更為精確的不足近似值或過(guò)剩近似值,我們知道π=3.14159…,若令$\frac{31}{10}<π<\frac{49}{15}$,則第一次用“調(diào)日法”后得$\frac{16}{5}$是π的更為精確的過(guò)剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,若每次都取最簡(jiǎn)分?jǐn)?shù),那么第三次用“調(diào)日法”后可得π的近似分?jǐn)?shù)為( 。
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,棱長(zhǎng)為3的正方體的頂點(diǎn)A在平面α上,三條棱AB,AC,AD都在平面α的同側(cè),若頂點(diǎn)B,C到平面α的距離分別為1,$\sqrt{2}$,則頂點(diǎn)D到平面α的距離是$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=log2|x|-1.若a=f(-4),b=f(2sinθ),c=2f(sinθ),θ≠$\frac{kπ}{2}$,k∈Z,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知α是鈍角,β是銳角,則α-β的范圍是(0°,180°).

查看答案和解析>>

同步練習(xí)冊(cè)答案