18.如圖,課桌上放著一個圓錐SO,點A為圓錐底面圓周上一點,SA=2cm,OA=1cm,螞蟻從點A沿圓錐的側(cè)面爬行一周再回到A,則螞蟻行跡的最短路程是( 。
A.2πcmB.2$\sqrt{2}$cmC.4$\sqrt{2}$cmD.4cm

分析 利用圓錐側(cè)面展開圖的弧長等于底面圓的周長,進(jìn)而得出扇形圓心角的度數(shù),即可求出AA′的長.

解答 解:由題意可得出:SA=SA′=2cm,
∠ASA′=$\frac{2π×1}{2}$=π,
∴AA′=4cm,
故選:D.

點評 此題主要考查了平面展開圖的最短路徑問題,得出∠ASA′的度數(shù)是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,θ∈(0,$\frac{π}{2}$),則cosθ=$\frac{\sqrt{5}}{5}$; sin(2θ-$\frac{π}{3}$)=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解不等式:ax2+(a+1)x+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知函數(shù)f(x)的定義域為(-1,2],求函數(shù)f(x2-1)的定義域;
(2)已知函數(shù)f(3x-4)的定義域為[0,4),求函數(shù)f(1-2x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\frac{1}{2}$x2-ln(1-x)的單調(diào)增區(qū)間為($\frac{1-\sqrt{5}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知α:|x|>1,求β,使β分別為α的
(1)必要非充分條件,β:|x|>$\frac{1}{2}$.
(2)充分非必要條件,β:|x|>2.
(3)充要條件,β:x>1或x<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.證明$\underset{lim}{x→0}$$\frac{1+x}{1-{e}^{\frac{1}{x}}}$不存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)隨機變量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=$\frac{5}{9}$,則P(η≥2)的值為( 。
A.$\frac{20}{27}$B.$\frac{8}{27}$C.$\frac{7}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若x+2y+4z=1,則x2+y2+z2的最小值是(  )
A.21B.$\frac{1}{21}$C.16D.$\frac{1}{16}$

查看答案和解析>>

同步練習(xí)冊答案