已知橢圓
x2
25
+
y2
16
=1的左右焦點分別為F1、F2,P是橢圓上一點,且滿足|PF2|=|F1F2|,那么△PF1F2的面積等于
 
考點:橢圓的簡單性質(zhì)
專題:解三角形,圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓的a,b,c,再由橢圓的定義,可得|PF1|=4,再由等腰三角形的面積公式計算即可得到.
解答: 解:橢圓
x2
25
+
y2
16
=1的a=5,b=4,c=
a2-b2
=3,
在△PF1F2中,|PF2|=|F1F2|=2c=6,
由橢圓的定義可得|PF1|=2a-|PF2|=10-6=4,
則△PF1F2的面積為
1
2
×4×
62-22
=8
2

故答案為:8
2
點評:本題考查橢圓的定義、方程和性質(zhì),同時考查三角形的面積的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
4tan12.5°
1-tan212.5°
,b=sin85°-
3
cos85°,c=2(sin47°sin66°-sin24°sin43°)則a、b、c的大小關(guān)系是( 。
A、b>c>a
B、a>b>c
C、b>a>c
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,則實數(shù)c的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2+2mx+3m+4.
(1)m為何值時,f(x)有兩個零點且均比-1大.
(2)求f(x)在[0,2]上的最大值g(m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點F1,F(xiàn)2,點P在橢圓上,則△PF1F2的面積最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
x
1+2x

(Ⅰ)求證:f(x)在區(qū)間(0,+∞)上單調(diào)遞增;
(Ⅱ)若f[x(3x-2)]<-
1
3
,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖△ABC中,∠BAC=120°,AB=1,AC=2,D在BC上,且DC=4BD,則AD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個空間幾何體的三視圖(注:正視圖也稱主視圖,側(cè)視圖也稱左視圖),其中正視圖、側(cè)視圖都是由邊長為4和6的矩形以及直徑等于4的圓組成,俯視圖是直徑等于4的圓,該幾何體的體積是(  )
A、
41π
3
B、
62π
3
C、
83π
3
D、
104π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求二次函數(shù)y=x2+4的值域.

查看答案和解析>>

同步練習(xí)冊答案