【題目】已知函數(shù)f(x)=kx+log9(9x+1)(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)g(x)=log9(a3x﹣ a)的圖象與f(x)的圖象有且只有一個公共點,求a的取值范圍.
【答案】
(1)解:∵f(x)是偶函數(shù),∴由f(﹣x)=f(x)得﹣kx+log9(9﹣x+1)=kx+log9(9x+1),
整理得
(2)解:由題意知,方程 只有一解,即 有且只有一個實根,
令t=3x,則t∈(0,+∞),
從而方程 有且只有一個正實根t,
當a﹣1=0時, (舍去),
當a﹣1≠0時,若判別式△=0,即 +4a﹣4=0,
即4a2+9a﹣9=0得a=﹣3或a= ,
當a= 時,t<0,不滿足條件.舍去,
若△>0,則t1t2<0,得 ,則a>1,
從而所求a的范圍是{﹣3}∪(1,+∞)
【解析】(1)根據(jù)函數(shù)奇偶性的性質建立方程進行求解.(2)根據(jù)函數(shù)g(x)和f(x)圖象的交點個數(shù)進行討論求解.
【考點精析】解答此題的關鍵在于理解函數(shù)奇偶性的性質的相關知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數(shù)學 來源: 題型:
【題目】在某城市氣象部門的數(shù)據(jù)中,隨機抽取了100天的空氣質量指數(shù)的監(jiān)測數(shù)據(jù)如表:
空氣質量指數(shù)t | (0,50] | (50,100] | (100,150] | (150,200] | (200,300] | |
質量等級 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴重污染 |
天數(shù)K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)在該城市各醫(yī)院每天收治上呼吸道病癥總人數(shù)y與當天的空氣質量t(t取整數(shù))存在如下關系y=,且當t>300時,y>500估計在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;
(2)若在(1)中,當t>300時,y與t的關系擬合于曲線,現(xiàn)已取出了10對樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且,求擬合曲線方程.
(附:線性回歸方程=a+bx中,b=,a=﹣b)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù),其中,且.
(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x(1+m|x|),關于x的不等式f(x)>f(x+m)的解集記為T,若區(qū)間[﹣ , ]T,則實數(shù)m的取值范圍是( )
A.( ,0)
B.( ,0)
C.(﹣∞, )
D.( ,0)∪(0, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在明朝程大位《算法統(tǒng)宗》中,有這樣的一首歌謠,叫做浮屠增級歌.“遠看巍巍塔七層,紅光點點倍加倍;共燈三百八十一,請問尖頭幾盞燈?”本題是說,“遠處有一座雄偉的佛塔,塔上掛滿了許多紅燈,下一層燈數(shù)是上一層燈數(shù)的2倍,全塔共有381盞,試問頂層有幾盞燈?”;同樣在這本書中還有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?”如果譯成白話文,其意思是:“有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分一個,正好分完.”現(xiàn)按照分層抽樣的辦法從這100名和尚中選取12人派去布置第一個問題中最頂層的燈,那么每盞燈需要分派的大小和尚數(shù)各為(A)1人,3人 (B)2人,4人 (C)3人,6人 (D)3人,9人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是公差為1的等差數(shù)列,a1 , a5 , a25成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn= 3+an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)某旅行社為調查市民喜歡“人文景觀”景點是否與年齡有關,隨機抽取了55名市民,得到數(shù)據(jù)如下表:
喜歡 | 不喜歡 | 合計 | |
大于40歲 | 20 | 5 | 25 |
20歲至40歲 | 10 | 20 | 30 |
合計 | 30 | 25 | 55 |
(1)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關?
(2)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取6人作進一步調查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),().
(1)討論的單調性;
(2)設, ,若()是的兩個零點,且,
試問曲線在點處的切線能否與軸平行?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com