【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調性并求出單調區(qū)間.

【答案】
(1)解:因為函數(shù)f(x)=ax2+blnx,

所以

又函數(shù)f(x)在x=1處有極值 ,

所以

可得 ,b=﹣1


(2)解:由(1)可知 ,其定義域是(0,+∞),

當x變化時,f′(x),f(x)的變化情況如下表:

x

(0,1)

1

(1,+∞)

f′(x)

0

+

f(x)

極小值

所以函數(shù)y=f(x)的單調減區(qū)間是(0,1),單調增區(qū)間是(1,+∞)


【解析】(1)函數(shù)f(x)=ax2+blnx在x=1處有極值 得到f(1)= ,f′(1)=0得到a、b即可;(2)找到函數(shù)的定義域,在定義域中找到符合條件的駐點來討論函數(shù)的增減性求出單調區(qū)間即可.
【考點精析】認真審題,首先需要了解利用導數(shù)研究函數(shù)的單調性(一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減),還要掌握函數(shù)的極值與導數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)

I求函數(shù)上零點的個數(shù);

II,若函數(shù)上是增函數(shù).

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知線段AB,CD分別在兩條異面直線上,M,N分別是線段AB,CD的中點,則MN(AC+BD)(填“>”“<”或“=”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x2﹣x﹣2)的定義域為集合A,函數(shù) ,x∈[0,9]的值域為集合B,
(1)求A∩B;
(2)若C={x|3x<2m﹣1},且(A∩B)C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】向量 =(1,2), =(x,1),
(1)當 +2 與2 平行時,求x;
(2)當 +2 與2 垂直時,求x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當a=2時,求函數(shù)f(x)的定義域;
(2)是否存在實數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,是奇函數(shù)且在定義域內單調遞減的函數(shù)是(
A.
B.
C.y=﹣tanx
D.y=﹣x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如圖13所示.

1)求頻率分布直方圖中a的值;

2)分別求出成績落在[5060)[60,70)中的學生人數(shù);

3從成績在[50,70)的學生中任選2人,求此2人的成績都在[6070)中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,若, 處切線的斜率為

(1)求函數(shù)的解析式及其單調區(qū)間;

(2)若實數(shù)滿足,且對于任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案