【題目】已知函數(shù)f(x)=lg(x2﹣x﹣2)的定義域?yàn)榧螦,函數(shù) ,x∈[0,9]的值域?yàn)榧螧,
(1)求A∩B;
(2)若C={x|3x<2m﹣1},且(A∩B)C,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:已知函數(shù)f(x)=lg(x2﹣x﹣2)的定義域?yàn)榧螦,函數(shù) ,x∈[0,9]的值域?yàn)榧螧,
則A={x|x2﹣x﹣2>0}={x|x<﹣1或x>2},B={x|0≤x≤3},
∴A∩B={x|x<﹣1或x>2}∩{x|0≤x≤3}={x|2<x≤3}
(2)解:∵ 且(A∩B)C,
∴ ,即m>5
【解析】(1)由對(duì)數(shù)函數(shù)的定義域求出集合A,由函數(shù) ,x∈[0,9]的值域求出集合B,則A∩B可求;(2)由集合C化為 且(A∩B)C得到不等式 ,求解不等式即可得到實(shí)數(shù)m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,,底面是梯形,,,.
(1)求證:平面平面;
(2)設(shè)為棱上一點(diǎn),,試確定的值使得二面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足 (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)在其定義域的一個(gè)子集[a,b]上存在實(shí)數(shù) (a<m<b),使f(x)在m處的導(dǎo)數(shù)f′(m)滿足f(b)﹣f(a)=f′(m)(b﹣a),則稱m是函數(shù)f(x)在[a,b]上的一個(gè)“中值點(diǎn)”,函數(shù)f(x)= x3﹣x2在[0,b]上恰有兩個(gè)“中值點(diǎn)”,則實(shí)數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點(diǎn).
(I)求證: .
(II)若, 分別是, 的中點(diǎn),求證: 平面.
(III)若二面角的大小為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無(wú)窮數(shù)列中,,對(duì)于任意,都有,. 設(shè), 記使得成立的的最大值為.
(1)設(shè)數(shù)列為1,3,5,7,,寫出,,的值;
(2)若為等差數(shù)列,求出所有可能的數(shù)列;
(3)設(shè),,求的值.(用表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值 .
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c且a=5,sinA= .
(I)若S△ABC= ,求周長(zhǎng)l的最小值;
(Ⅱ)若cosB= ,求邊c的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com