11.一名工人維護3臺獨立的游戲機,一天內(nèi)3臺需要維護的概率分別為0.9、0.8和0.85,則一天內(nèi)至少有一臺游戲機不需要維護的概率為0.388(結(jié)果用小數(shù)表示)

分析 一天內(nèi)至少有一臺游戲機不需要維護的對立事件是三臺都需要維護,由此利用對立事件概率計算公式能求出一天內(nèi)至少有一臺游戲機不需要維護的概率.

解答 解:一天內(nèi)至少有一臺游戲機不需要維護的對立事件是三臺都需要維護,
∴一天內(nèi)至少有一臺游戲機不需要維護的概率:
p=1-0.9×0.8×0.85=0.388.
故答案為:0.388.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意對立事件、相互獨立事件概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|x-a|+|x+1|(x∈R).
(Ⅰ)當a=1時,解不等式f(x)≥3;
(Ⅱ)若不等式f(x)≥$\frac{|2m+1|-|1-m|}{|m|}$對任意實數(shù)x與任意非零實數(shù)m都恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)+x>0;
(Ⅱ)若關(guān)于x的不等式f(x)≤a2-2a在R上的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分圖象如圖所示,則y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范圍是( 。
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。
晉級成功晉級失敗合計
16
50
合計
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關(guān)?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學期望E(X).
(參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k00.400.250.150.100.050.025
k00.7801.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x-$\frac{4}{m}$|+|x+m|,(m>0)
(I)證明:f(x)≥4
(II)若f(1)>5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.定義域為{x|x∈N*,1≤x≤12}的函數(shù)f(x)滿足|f(x+1)-f(x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比數(shù)列,若f(1)=1,f(12)=4,則滿足條件的不同函數(shù)的個數(shù)為176.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.(x2-$\sqrt{\frac{2}{x}}$)5的展開式中常數(shù)項為20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條相互垂直的半徑,若該幾何體的體積是$\frac{28π}{3}$,則三視圖中圓的半徑為(  )
A.2B.3C.4D.6

查看答案和解析>>

同步練習冊答案