【題目】某市家庭煤氣的使用量x(m3)和煤氣費f(x)(元) 滿足關系f(x)= ,已知某家庭今年前三個月的煤氣費如表:

月份

用氣量

煤氣費

一月份

4m3

4 元

二月份

25m3

14 元

三月份

35m3

19 元

若四月份該家庭使用了20m3的煤氣,則其煤氣費為( )元.
A.10.5
B.10
C.11.5
D.11

【答案】C
【解析】解:由題意得:C=4,將(25,14),(35,19)代入f(x)=4+B(x﹣A),得: ,∴A=5,B= ,故x=20時:f(20)=4+ (20﹣5)=11.5,

所以答案是:C.

【考點精析】利用函數(shù)的表示方法對題目進行判斷即可得到答案,需要熟知兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法;把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法;用圖像表示函數(shù)關系的方法叫做圖像法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(﹣2,4), =(﹣1,﹣2).
(1)求 , 的夾角的余弦值;
(2)若向量 ﹣λ 與2 + 垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中錯誤的個數(shù)為:( )
①y= 的圖象關于(0,0)對稱;
②y=x3+x+1的圖象關于(0,1)對稱;
③y= 的圖象關于直線x=0對稱;
④y=sinx+cosx的圖象關于直線x= 對稱.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x)=f(x+4),且當x∈[﹣2,0]時,f(x)=( x﹣1,若在區(qū)間(﹣2,6]內(nèi)關于x的方程f(x)﹣loga(x+2)=0(a>1)恰有三個不同的實數(shù)根,則a的取值范圍是( )
A.( ,2)
B.( ,2)
C.[ ,2)
D.( ,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=ax , y=xb , y=logcx的圖象如圖所示,則a,b,c的大小關系為 . (用“<”號連接)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量
(Ⅰ)若 , 共線,求x的值;
(Ⅱ)若 ,求x的值;
(Ⅲ)當x=2時,求 夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券類穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票類風險型產(chǎn)品的收益與投資額的算術平方根成正比,已知兩類產(chǎn)品各投資1萬元時的收益分別為0.125萬元和0.5萬元,如圖:

(Ⅰ)分別寫出兩類產(chǎn)品的收益y(萬元)與投資額x(萬元)的函數(shù)關系;
(Ⅱ)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x),定義
(Ⅰ)寫出函數(shù)F(2x﹣1)的解析式;
(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求實數(shù)a的值;
(Ⅲ)當 時,求h(x)=cosxF(x+sinx)的零點個數(shù)和值域.

查看答案和解析>>

同步練習冊答案