精英家教網 > 高中數學 > 題目詳情

【題目】下列說法:

①分類變量的隨機變量越大,說明“有關系”的可信度越大.

②以模型去擬合一組數據時,為了求出回歸方程,設,將其變換后得到線性方程,則的值分別是和0.3.

③根據具有線性相關關系的兩個變量的統(tǒng)計數據所得的回歸直線方程為中, ,

.正確的個數是( )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】分類變量AB的隨機變量越大,說明“AB有關系”的可信度越大,正確;

②∵,兩邊取對數,可得lny=ln()=lnc+ln=lnc+kx

z=lny,可得z=lnc+kx,

z=0.3x+4,∴l(xiāng)nc=4,k=0.3

c=e4.即正確;

根據具有線性相關關系的兩個變量的統(tǒng)計數據所得的回歸直線方程為y=a+bx中,

b=2, =1, =3,則a=1,正確。

故正確的為①②③,故選D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線 ,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線 .

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,求的參數方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某保險公司有一款保險產品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:

(1)試估計這款保險產品的收益率的平均值;

(2)設每份保單的保費在20元的基礎上每增加元,對應的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組的對應數據:

25

30

38

45

52

銷量為(萬份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強的線性相關關系,且據此計算出的回歸方程為

(。┣髤的值;

(ⅱ)若把回歸方程當作的線性關系,用(1)中求出的收益率的平均值作為此產品的收益率,試問每份保單的保費定為多少元時此產品可獲得最大利潤,并求出最大利潤.注:保險產品的保費收入每份保單的保費銷量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地隨著經濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份

2011

2012

2013

2014

2015

儲蓄存款(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數據進行了處理,,得到下表2:

時間代號

1

2

3

4

5

0

1

2

3

5

)求關于的線性回歸方程;

)通過()中的方程,求出關于的回歸方程;

)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.

(1)求矩形的外接圓的方程;

(2)已知直線),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數滿足:對任意恒成立,當時,.

1求證上是單調遞增函數;

2已知,解關于的不等式;

3,且不等式對任意恒成立.求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若曲線處的切線互相平行,求的值;

(2)求的單調區(qū)間;

(3),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x)滿足f(x)=f(x+4),當2≤x≤6時, ,f(4)=31.

(1)求m,n的值;

(2)比較f(log3m)與f(log3n)的大小.

查看答案和解析>>

同步練習冊答案