【題目】在平面直角坐標系中,已知曲線: ,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線: .
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,求的參數方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
科目:高中數學 來源: 題型:
【題目】已知△ABC中,內角A,B,C所對的邊分別為a,b,c,且滿足asinA-csinC=b(sinA-sinB).
(Ⅰ)求角C的大。
(Ⅱ)若邊長c=4,求△ABC的周長最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(),.
(1)若的圖象在處的切線恰好也是圖象的切線.
①求實數的值;
②若方程在區(qū)間內有唯一實數解,求實數的取值范圍.
(2)當時,求證:對于區(qū)間上的任意兩個不相等的實數, ,都有成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題13分)已知函數f(x)=- (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調遞增函數;
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某上市股票在30天內每股的交易價格(元)與時間(天)組成有序數對,點落在圖中的兩條線段上.
該股票在30天內的日交易量(萬股)與時間(天)的部分數據如下表所示:
第天 | 4 | 10 | 16 | 22 |
(萬股) | 36 | 30 | 24 | 18 |
(1)根據提供的圖象,寫出該股票每股交易價格(元)與時間(天)所滿足的函數關系式;
(2)根據表中數據,寫出日交易量(萬股)與時間(天)的一次函數關系式;
(3)用(萬元)表示該股票日交易額,寫出關于的函數關系式,并求在這30天內第幾天日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①分類變量與的隨機變量越大,說明“與有關系”的可信度越大.
②以模型去擬合一組數據時,為了求出回歸方程,設,將其變換后得到線性方程,則的值分別是和0.3.
③根據具有線性相關關系的兩個變量的統(tǒng)計數據所得的回歸直線方程為中, ,
則.正確的個數是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com