在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點(diǎn),
(1)求證:MN∥平面PAD;     
(2)求點(diǎn)B到平面AMN的距離.

(1)證明:連接BD,則BD∩AC=N
∵M(jìn),N分別為PB,AC的中點(diǎn),
∴MN是△BPD的中位線
∴MN∥PD
∵M(jìn)N?平面PAD,PD?平面PAD
∴MN∥平面PAD;
(2)解:設(shè)點(diǎn)B到平面AMN的距離為h,則
∵底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,
∴AM=AN=,MN=

,M到平面ABN的距離為
∴由VM-ABN=VB-AMN,可得
∴h=,即點(diǎn)B到平面AMN的距離為
分析:(1)連接BD,則BD∩AC=N,利用三角形中位線的性質(zhì),可得MN∥PD,利用線面平行的判定,即可得到MN∥平面PAD;
(2)利用VM-ABN=VB-AMN,可求點(diǎn)B到平面AMN的距離.
點(diǎn)評:本題考查線面平行,考查點(diǎn)到平面距離的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于點(diǎn)N,M是PD中點(diǎn).
(1)用空間向量證明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直線CD與平面ACM所成的角的正弦值.
(3)求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點(diǎn)
(1)求證:直線MO∥平面PAB;
(2)求證:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求證:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)如圖,在四棱錐P-ABCD中,底面ABCD為正方形,且PD⊥平面ABCD,PD=AB=1,EF分別是PB、AD的中點(diǎn),
(I)證明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大。

查看答案和解析>>

同步練習(xí)冊答案