【題目】已知函數(shù).
(1)若過(guò)點(diǎn)的直線與曲線相切,求直線的斜率的值;
(2)設(shè),若,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)設(shè)直線的方程為,設(shè)切點(diǎn)坐標(biāo)為,根據(jù)題意可得出關(guān)于、的方程組,求出、的值,進(jìn)而可得出的值;
(2)根據(jù)題意知,當(dāng)時(shí),,當(dāng)時(shí),,然后求得函數(shù)的導(dǎo)數(shù),對(duì)實(shí)數(shù)的取值進(jìn)行分類(lèi)討論,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,驗(yàn)證條件“當(dāng)時(shí),,當(dāng)時(shí),”是否滿(mǎn)足,由此可得出實(shí)數(shù)的取值范圍.
(1)因?yàn)橹本過(guò)點(diǎn),不妨設(shè)直線的方程為,由題意得,
設(shè)切點(diǎn)為,則,解得.
直線過(guò)點(diǎn),則有,解得,即直線的斜率為;
(2),.
①若,則當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,
此時(shí),即,不合乎題意;
②若,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
(i)當(dāng)時(shí),,函數(shù)在上單調(diào)遞增.
又,所以當(dāng)時(shí),;當(dāng)時(shí),.
于是有;
(ii)當(dāng)時(shí),記,則,
當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞減,
此時(shí),即,不合乎題意;
(iii)若,記,則,
當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞減,
此時(shí),即,不合乎題意.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的右頂點(diǎn)為.左、右焦點(diǎn)分別為,,過(guò)點(diǎn)且垂直于軸的直線交橢圓于點(diǎn)(在第象限),直線的斜率為,與軸交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn)(、不與、重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中社團(tuán)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次是否開(kāi)通“微博”的調(diào)查,若開(kāi)通“微博”的稱(chēng)為“時(shí)尚族”,否則稱(chēng)為“非時(shí)尚族”,通過(guò)調(diào)查分別得到如圖所示統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
完成以下問(wèn)題:
(Ⅰ)補(bǔ)全頻率分布直方圖并求n,a,p的值;
(Ⅱ)從[40,50)歲年齡段的“時(shí)尚族”中采用分層抽樣法抽取18人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中選取3人作為領(lǐng)隊(duì),記選取的3名領(lǐng)隊(duì)中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,A1D與AD1交于點(diǎn)E,AA1=AD=2AB=4.
(1)證明:AE⊥平面ECD.
(2)求直線A1C與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)與的圖象有兩個(gè)不同的交點(diǎn),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:,直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
若,點(diǎn)K在橢圓E上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過(guò)點(diǎn),射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,是的中點(diǎn),是上一點(diǎn),且
(1)求證:平面;
(2)若求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實(shí)數(shù)a,b滿(mǎn)足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com