【題目】已知函數(shù)fx)=|x+1||2x2|的最大值為M,正實(shí)數(shù)a,b滿足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

【答案】1;(2)詳見(jiàn)解析.

【解析】

1)去絕對(duì)值得分段函數(shù):,由單調(diào)性易求函數(shù)fx)的最大值,即有M的值,再由柯西不等式,即可得到所求最小值;

2)應(yīng)用分析法證明,考慮兩邊取自然對(duì)數(shù),結(jié)合因式分解和不等式的性質(zhì)、對(duì)數(shù)的性質(zhì),即可得證.

解:(1)函數(shù),

在(,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減,

當(dāng)x1時(shí),fx)取得最大值

M2,

正實(shí)數(shù)a,b滿足a+b2,

由柯西不等式可得(2a2+b2)(1)≥(ab2,

化為2a2+b2,

所以當(dāng),即b,a時(shí),2a2+b2取得最小值

2)證明:因?yàn)?/span>a+b2,a,b0,要證aabbab,即證alna+blnblna+lnb,

即證(a1lna≥(1blnb,

即證(a1lna≥(a1ln2a),

即證(1aln1)≥0,

當(dāng)0a1時(shí),11,所以ln1)>0,

1a0,可得(1aln1)>0;

當(dāng)a1時(shí),(1aln1)=0;

當(dāng)1a2時(shí),011,所以ln1)<0,

因?yàn)?/span>1a0,所以(1aln1)>0,

綜上所述,(1aln1)≥0成立,即aabbab.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠肺炎疫情造成醫(yī)用防護(hù)服緊缺,當(dāng)?shù)卣疀Q定為防護(hù)服生產(chǎn)企業(yè)A公司擴(kuò)大生產(chǎn)提供(萬(wàn)元)的專項(xiàng)補(bǔ)貼,并以每套80元的價(jià)格收購(gòu)其生產(chǎn)的全部防護(hù)服.A公司在收到政府x(萬(wàn)元)補(bǔ)貼后,防護(hù)服產(chǎn)量將增加到(萬(wàn)件),其中k為工廠工人的復(fù)工率A公司生產(chǎn)t萬(wàn)件防護(hù)服還需投入成本(萬(wàn)元).

1)將A公司生產(chǎn)防護(hù)服的利潤(rùn)y(萬(wàn)元)表示為補(bǔ)貼x(萬(wàn)元)的函數(shù);

2)對(duì)任意的(萬(wàn)元),當(dāng)復(fù)工率k達(dá)到多少時(shí),A公司才能不產(chǎn)生虧損?(精確到0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)為正常數(shù)),軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)滿足,且線段的中點(diǎn)在軸上.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)為曲線的一條動(dòng)弦(不垂直于軸).其垂直平分線與軸交于點(diǎn).當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面BB1C1C為菱形,

1)求證:B1CAB

2)若∠CBB160°,ACBC,且點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,求二面角BAA1C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E,過(guò)右焦點(diǎn)F的直線l與橢圓E交于AB兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓EAB兩點(diǎn)處的切線交于P,點(diǎn)P在定直線.

1)記點(diǎn),求過(guò)點(diǎn)與橢圓E相切的直線方程;

2)以為直徑的圓過(guò)點(diǎn)F,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,P,Q,M,N,HR是各條棱的中點(diǎn).

①直線平面;②;③P,Q,HR四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)設(shè)曲線軸正半軸交于點(diǎn),求曲線在該點(diǎn)處的切線方程;

(Ⅱ)設(shè)方程有兩個(gè)實(shí)數(shù)根,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正四棱錐PABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過(guò)點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案