18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1、F2為橢圓的左右焦點(diǎn),過F2斜率為k(k>0)的直線l與橢圓相交于M、N兩點(diǎn),△MF1N的周長為8,離心率為$\frac{1}{2}$.
(1)求橢圓的方程;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{17}{7}$(O為坐標(biāo)原點(diǎn)),求|MN|.

分析 (1)由已知求得a,再由離心率求得c,利用隱含條件求得b,則橢圓方程可求;
(2)聯(lián)立直線方程與橢圓方程,化為關(guān)于x得一元二次方程,利用根與系數(shù)的關(guān)系及$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{17}{7}$列式求得直線斜率,再由弦長公式求得|MN|.

解答 解:(1)如圖,由題意可得,4a=8,得a=2,
又$\frac{c}{a}=\frac{1}{2}$,∴c=1,b2=a2-c2=3.
則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)F2(1,0),設(shè)直線l的方程為y=k(x-1),M(x1,y1),N(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,可得(3+4k2)x2-8k2x+4k2-12=0.
∴${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{3+4{k}^{2}},{x}_{1}{x}_{2}=\frac{4{k}^{2}-12}{3+4{k}^{2}}$.
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=(1+{k}^{2}){x}_{1}{x}_{2}-{k}^{2}({x}_{1}+{x}_{2})+{k}^{2}$=-$\frac{17}{7}$,
即$(1+{k}^{2})•\frac{4{k}^{2}-12}{3+4{k}^{2}}-{k}^{2}•\frac{8{k}^{2}}{3+4{k}^{2}}+{k}^{2}=-\frac{17}{7}$,
解得k=1(k>0).
∴${x}_{1}+{x}_{2}=\frac{8}{7}$,${x}_{1}{x}_{2}=-\frac{8}{7}$.
則|MN|=$\sqrt{2}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}=\frac{24}{7}$.

點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,考查計(jì)算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)是以π為周期的奇函數(shù),且當(dāng)x∈[-$\frac{π}{2}$,0)時(shí),f(x)=cos x,則f(-$\frac{5π}{3}$)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)點(diǎn)P(x,y) 在函數(shù)y=4-2x的圖象上運(yùn)動(dòng),則9x+3y的最小值為(  )
A.9B.12C.18D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,最小正周期為π的是(  )
A.y=|sinx|B.y=sinxC.sin3xD.y=cos4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,曲線C的方程為(x-1)2+(y-1)2=2,直線l的傾斜角為45°且經(jīng)過點(diǎn)P(-1,0).
(1)以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于兩點(diǎn)A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)y=f(x)對任意的x,y∈R,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),恒有f(x)<0.
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)若f(2)=1,解不等式f(-x2)+2f(x)+4<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在函數(shù)y=|x|(x∈[-2,2])的圖象上有一點(diǎn)P(t,|t|),此函數(shù)的圖象與x軸、直線x=-2及x=t圍成的圖形(如圖陰影部分)的面積為S,則S與t的函數(shù)關(guān)系可表示為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\sqrt{a{x^2}+ax+3}$的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( 。
A.$({\frac{1}{3},+∞})$B.(0,12]C.[0,12]D.$({-∞,\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=lnx-x的單調(diào)遞增區(qū)間為(0,1].

查看答案和解析>>

同步練習(xí)冊答案