在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則
OG
可用基底{
OA
,
OB,
OC
}
表示成:
OG
=
1
4
(
OA
+
OB
+
OC
)
1
4
(
OA
+
OB
+
OC
)
分析:要表示向量
OG
,只需要用給出的基底{
OA
OB,
OC
}
表示出來即可,要充分利用圖形的直觀性,熟練利用向量加法的三角形法則進行運算.
解答:解:如圖,連接ON,在△OBC中,點N是BC中點,則由平行四邊形法則得
ON
=
1
2
OB
+
OC

在△OMN中,點G是MN中點,則由平行四邊形法則得
OG
=
1
2
OM
+
ON

=
1
2
OM
+
1
2
ON

=
1
4
OA
+
1
2
1
2
OB
+
OC

1
4
(
OA
+
OB
+
OC
)
,
故答案為:
1
4
(
OA
+
OB
+
OC
)
點評:本題考查空間向量的運算,即向量加法的平行四邊形法則,三角形法則,空間向量基基底的概念,空間向量的基本定理及其意義.考查了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,AD是斜邊BC上的高,有很多大家熟悉的性質(zhì),例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“
1
|AD|2
=
1
|AB|2
+
1
|AC|2
”等,由此聯(lián)想,在三棱錐O-ABC中,若三條側(cè)棱OA,OB,OC兩兩互相垂直,可以推出哪些結(jié)論?至少寫出兩個結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△OAB中,∠O=90°,則 cos2A+cos2B=1.根據(jù)類比推理的方法,在三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ 分別是三個側(cè)面與底面所成的二面角,則
cos2α+cos2β+cos2γ=1
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐O-ABC中,OA、OB、OC兩兩垂直,OC=1,OA=x,OB=y,x+y=4,當三棱錐O-ABC的體積最大時,異面直線AB與OC的距離等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)給出下列命題,其中正確的命題是
①③④
①③④
(寫出所有正確命題的編號).
①非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
a
a
+
b
的夾角為30°;
②已知非零向量
a
、
b
,則“
a
b
>0
”是“
a
、
b
的夾角為銳角”的充要條件;
③命題“在三棱錐O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若點P在△ABC所在的平面內(nèi),則x+y=3”的否命題為真命題;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,則△ABC為等腰三角形.

查看答案和解析>>

同步練習冊答案