15.設f(x)=|x-1|+2|x+1|的最小值為m.
(Ⅰ)求m的值;
(Ⅱ)設a,b∈R,a2+b2=m,求$\frac{1}{{a}^{2}+1}+\frac{4}{^{2}+1}$的最小值.

分析 (Ⅰ)通過討論x的范圍求出函數(shù)f(x)的最小值,從而求出m的值即可;(Ⅱ)根據(jù)基本不等式的性質(zhì)求出代數(shù)式的最小值即可.

解答 解:(Ⅰ)當x≤-1時,f(x)=-3x-1≥2,
當-1<x<1時,f(x)=x+3>2,
當x≥1時,f(x)=3x+1≥4,
∴當x=-1時,f(x)取得最小值m=2;
(Ⅱ)由題意知a2+b2=2,a2+1+b2+1=4,
∴$\frac{1}{{a}^{2}+1}$+$\frac{4}{^{2}+1}$=$\frac{1}{4}$(a2+1+b2+1)($\frac{1}{{a}^{2}+1}$+$\frac{4}{^{2}+1}$)=$\frac{1}{4}$[5+$\frac{^{2}+1}{{a}^{2}+1}$+$\frac{4{(a}^{2}+1)}{^{2}+1}$]≥$\frac{9}{4}$,
當且僅當$\frac{^{2}+1}{{a}^{2}+1}$=$\frac{4{(a}^{2}+1)}{^{2}+1}$]時,即a2=$\frac{1}{3}$,b2=$\frac{5}{3}$等號成立,
∴$\frac{1}{{a}^{2}+1}+\frac{4}{^{2}+1}$的最小值為$\frac{9}{4}$.

點評 本題考查了解絕對值不等式問題,考查基本不等式的性質(zhì)的應用,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知平面內(nèi)有三個向量$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$,其中∠AOB=60°,∠AOC=30°,且$|\overrightarrow{OA}|=2$,$|\overrightarrow{OB}|=2$,$|\overrightarrow{OC}|=4\sqrt{3}$,若$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,則λ+μ=4或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{|x-1|}}&{x>0}\\{-{x}^{2}-2x+1}&{x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)+(a-1)f(x)=a有7個不等的實數(shù)根,則實數(shù)a的取值范圍是(-2,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示莖葉圖記錄了甲、乙兩組5名工人制造某種零件的個數(shù)

(1)求甲組工人制造零件的平均數(shù)和方差;
(2)分別從甲、乙兩組中隨機選取一個工人,求這兩個工人制造的零件總數(shù)不超過20的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{x-1≥0}\end{array}\right.$,則目標函數(shù)$z=\frac{y}{x+1}$的取值范圍是( 。
A.$(-∞,-\frac{1}{2}]∪[{0,\frac{3}{2}}]$B.$[{\frac{1}{4},\frac{3}{2}}]$C.$[{-\frac{1}{2},\frac{1}{4}}]$D.$[{-\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)a,b,c,d滿足,b=a-2ea,c+d=4,其中e是自然對數(shù)的底數(shù),則(a-c)2+(b-d)2的最小值為(  )
A.16B.18C.20D.22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若等差數(shù)列{an}的前5項的和為25,則a1+a5=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知不等式組$\left\{\begin{array}{l}x+5y≥5\\ x+y≤5\\ x≥0\end{array}\right.$表示的平面區(qū)域為D,點集T={(x0,y0)|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的點},則T中的點的縱坐標之和為( 。
A.10B.11C.15D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.拋擲一枚骰子(六個面上分別標有數(shù)字1,2,3,4,5,6),則事件“向上的數(shù)字為奇數(shù)或向上的數(shù)字大于4”發(fā)生的概率為$\frac{2}{3}$.

查看答案和解析>>

同步練習冊答案