精英家教網 > 高中數學 > 題目詳情

南昌市為增強市民的交通安全意識,面向全市征召“小紅帽”志愿者在部分交通路口協(xié)助交警維持交通,把符合條件的1000名志愿者按年齡分組:第1組、第2組、第3組、第4組、第5組,得到的頻率分布直方圖如圖所示:

(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者在五一節(jié)這天到廣場協(xié)助交警維持交通,應從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,南昌市決定在這12名志愿者中隨機抽取3名志愿者到學校宣講交通安全知識,若表示抽出的3名志愿者中第3組的人數,求的分布列和數學期望.

(1)第3組6人,第4組4人,第5組2人;(2)分布列詳見解析,.

解析試題分析:(1)先通過頻率分步直方圖求出每一組中的總人數,再用分層抽樣求出每組中所需抽取的人數;(2)先分別求出每種情況的概率,再列分布列,利用分布列求期望.
試題解析:(1)由題意可知,第3組的人數為,第4組的人數為,第5組的人數為。       3分
所以利用分層抽樣在名志愿者中抽取名志愿者,每組抽取的人數為:
第3組,第4組,第5組     6分
(2)的所有可能取值為0,1,2,3,
,,,                          10分
所以,的分布列為:

所以的數學期望                        12分
考點:1.分層抽樣;2.分布列;3.數學期望.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數據的莖葉圖如圖.

(1)計算甲班的樣本方差;
(2)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數,得到如下資料:

日 期
4月1日
4月7日
4月15日
4月21日
4月30日
溫差
10
11
13
12
8
發(fā)芽數
23
25
30
26
16
(Ⅰ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出關于的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(Ⅰ)中所得的線性回歸方程是否可靠?
(參考公式:,
(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了估計某校的某次數學考試情況,現(xiàn)從該校參加考試的600名學生中隨機抽出60名學生,其成績(百分制)均在上,將這些成績分成六段,,…,后得到如圖所示部分頻率分布直方圖.

(1)求抽出的60名學生中分數在內的人數;(5分)
(2)若規(guī)定成績不小于85分為優(yōu)秀,則根據頻率分布直方圖,估計該校優(yōu)秀人數.(5分)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

學校為了預防甲流感,每天上午都要對同學進行體溫抽查。某一天,隨機抽取甲、乙兩個班級各10名同學,測量他們的體溫如圖:(單位0.1℃)

(1)哪個班所選取的這10名同學的平均體溫高?
(2)一般℃為低熱,℃為中等熱,℃為高熱。按此規(guī)定,記事件A為“從甲班發(fā)熱的同學中任選兩人,有中等熱的同學”,記事件B為“從乙班發(fā)熱的同學中任選兩人,有中等熱的同學”,分別求事件A和事件B的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了調查某大學學生在周日上網的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:
表1:男生上網時間與頻數分布表

上網時間(分鐘)





人數
5
25
30
25
15
表2:女生上網時間與頻數分布表
上網時間(分鐘)





人數
10
20
40
20
10
(Ⅰ)若該大學共有女生750人,試估計其中上網時間不少于60分鐘的人數;
(Ⅱ)完成表3的列聯(lián)表,并回答能否有90%的把握認為“學生周日上網時間與性別有關”?
(Ⅲ)從表3的男生中“上網時間少于60分鐘”和“上網時間不少于60分鐘”的人數中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取兩人,求至少有一人上網時間超過60分鐘的概率.
表3 :
 
上網時間少于60分鐘
上網時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年1月份,我國北方部分城市出現(xiàn)霧霾天氣,形成霧霾天氣主要原因與有關. 是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物. 日均值越小,空氣質量越好. 2012年2月29日,國家環(huán)保部發(fā)布的《環(huán)境空氣質量標準》見下表:

日均值k(微克)
空氣質量等級

一級

二級

超標

某環(huán)保部門為了了解甲、乙兩市的空氣質量狀況,在過去某月的30天中分別隨機抽取了甲、乙兩市6天的日均值作為樣本,樣本數據莖葉圖如上右圖所示(十位為莖,個位為葉). (Ⅰ)分別求出甲、乙兩市日均值的樣本平均數,并由此判斷哪個市的空氣質量較好;
(Ⅱ)若從甲市這6天的樣本數據中隨機抽取兩天的數據,求恰有一天空氣質量超標的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某高校組織的自主招生考試,共有1000名同學參加筆試,成績均介于60分到100分之間,從中隨機抽取50名同學的成績進行統(tǒng)計,將統(tǒng)計結果按如下方式分為4組:第1組[60,70),第2組[70,80),第3組[80,90),第4組[90,100].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在85分(含85分)以上的同學有面試資格.
(Ⅰ)估計所有參加筆試的1000名同學中,有面試資格的人數;
(Ⅱ)已知某中學有甲、乙兩位同學取得面試資格,且甲的筆試比乙的高;面試時,要求每人回答兩個問題,假設甲、乙兩人對每一個問題答對的概率均為;若甲答對題的個數不少于乙,則甲比乙優(yōu)先獲得高考加分資格.求甲比乙優(yōu)先獲得高考加分資格的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在生產過程中,測得纖維產品的纖度(表示纖維粗細的一種量)共有100個數據,將數據分組如表:

分組
頻數












合計

(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)估計纖度落在中的概率及纖度小于的概率是多少?
(3)從頻率分布直方圖估計出纖度的眾數、中位數和平均數.

查看答案和解析>>

同步練習冊答案