【題目】(1)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程;
(2)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn),且平行于直線x+2y-3=0的直線方程.
【答案】(1) 4x-3y±30=0.(2) 9x+18y-4=0.
【解析】試題分析:(1)由設(shè)出所求直線4x-3y+c=0,利用點(diǎn)到直線的距離求得參數(shù)值,從而求得直線;(2)由兩直線聯(lián)立方程求得交點(diǎn),由直線求得直線斜率,從而得到點(diǎn)斜式方程
試題解析:(1)設(shè)所求的直線方程為4x-3y+c=0.
由已知: =6,解得c=±30,
故所求的直線方程為4x-3y±30=0.
(2)設(shè)所求的直線方程為
2x+3y-5+λ(7x+15y+1)=0,
即(2+7λ)x+(3+15λ)y+λ-5=0,
由已知-=-,解得λ=1.
故所求的直線方程為9x+18y-4=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM經(jīng)過點(diǎn)A(3,0),且與直線l:x=﹣3相切,動(dòng)圓圓心M的軌跡方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條光線經(jīng)過P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}滿足a2=2,a5=8.
(1)求{an}的通項(xiàng)公式;
(2)各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,b1=1,b2+b3=a4 , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若 = ,求證: ≤ + +…+ <1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1﹣cosC).
(1)判斷△ABC的形狀;
(2)在△ABC的邊AB,AC上分別取D,E兩點(diǎn),使沿線段DE折疊三角形時(shí),頂點(diǎn)A正好落在邊BC上的P點(diǎn)處,設(shè)∠BDP=θ,當(dāng)AD最小時(shí),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(an , 2n), =(2n+1 , ﹣an+1),n∈N* , 向量 與 垂直,且a1=1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com