14.在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B=$\frac{π}{4}$,△ABC的面積為9,求a的值.

分析 (Ⅰ)由已知及正弦定理可得2sinAsinC=sinCcosA,由于sinC≠0,可求tanA=$\frac{1}{3}$,且A為銳角,利用同角三角函數(shù)基本關(guān)系式可求sinA的值.
(Ⅱ)利用同角三角函數(shù)基本關(guān)系式可求可得cosA,利用兩角和的正弦函數(shù)公式可求sinC,由正弦定理可得c=2$\sqrt{2}$a,進(jìn)而利用三角形面積公式即可計(jì)算得解.

解答 (本題滿分為14分)
(Ⅰ)∵3asinC=ccosA.
∴2sinAsinC=sinCcosA,…2分
∵sinC≠0,
∴tanA=$\frac{1}{3}$,且A為銳角,…4分
∴sinA=$\frac{\sqrt{10}}{10}$…7分
(Ⅱ)由(Ⅰ)可得cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{3\sqrt{10}}{10}$,
∴sinC=sin(A+B)=sin(A+$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,
由正弦定理可得$\frac{a}{c}=\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{4}$,c=2$\sqrt{2}$a,
∵S=$\frac{1}{2}$acsinB=$\frac{1}{2}a×2\sqrt{2}a×\frac{\sqrt{2}}{2}$=a2=9,
∴a=3.

點(diǎn)評 本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出以下命題:
(1)在回歸直線方程$\widehat{y}$=0.5x-85中,變量x=200時,變量$\widehat{y}$的值一定是15;
(2)根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出X2=7.469,而P(X2>6.635)≈0.01,則有99%的把握認(rèn)為兩個事件有關(guān);
(3)若不等式|x+1|-|x-1|>k有解,則k的取值范圍是k≤-2;
(4)隨機(jī)變量ζ滿足正態(tài)分布N(0,1),若P(|ξ|≤1.96)=0.950,則P(ξ<-1.96)=0.05.
其中正確的命題是(2)(將正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{x-1}{x+1}$(x>0)的值域是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-ax2+3x+6
(Ⅰ)若f(x)在[-$\frac{1}{3}$,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若x=3是f(x)的一個極值點(diǎn),求f(x)在[0,a]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(1+2x)6展開式中含x2項(xiàng)的系數(shù)為( 。
A.15B.30C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在某項(xiàng)調(diào)查活動中,調(diào)查部門從某單位500名職工中隨機(jī)抽出100名職工,得職工年齡頻率分布表.
分組(單位:歲)頻數(shù)頻率
[20,25)50.050
[25,30)0.200
[30,35)35
[35,40)300.300
[40,45)100.100
合計(jì)1001.00
(Ⅰ)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題紙中補(bǔ)全頻率分布直方圖,再根據(jù)頻率分布直方圖估計(jì)這500名職工中年齡在[30,35)歲的人數(shù);
(Ⅱ)在抽出的100名職工中按年齡再采用分層抽樣法抽取20人參加社會公益活動,其中選取2名職工擔(dān)任領(lǐng)隊(duì)工作,記這2名職工中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.袋中有6個編號不同的黑球和3個編號不同的白球,這9個球的大小及質(zhì)地都相同,現(xiàn)從該袋中隨機(jī)摸取3個球,則這三個球中恰有兩個黑球和一個白球的方法總數(shù)是45,設(shè)摸取的這三個球中所含的黑球數(shù)為X,則P(X=k)取最大值時,k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.中國古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=3,n=3,輸入的a依次為由小到大順序排列的質(zhì)數(shù)(從最小質(zhì)數(shù)開始),
直到結(jié)束為止,則輸出的s=(  )
A.9B.27C.32D.103

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=\frac{1}{{\sqrt{5-x}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[5,+∞)B.(5,+∞)C.(-∞,5]D.(-∞,5)

查看答案和解析>>

同步練習(xí)冊答案